
Selecting Elliptic Curves for
Cryptography:

an Efficiency and Security Analysis

Craig Costello
ECC2014 – Chennai, India

Joint work with
Joppe Bos (NXP), Patrick Longa (MSR), Michael Naehrig (MSR)

http://eprint.iacr.org/2014/130.pdf

http://eprint.iacr.org/2014/130.pdf

June 2013 – the Snowden leaks

“… the NSA had written
the [crypto] standard
and could break it.”

Post-Snowden responses
ÅBruce Schneier: “I no longer trust the constants. I believe the NSA has
manipulated them…”

ÅNigel Smart: “Shame on the NSA…”

ÅIACR: “The membership of the IACR repudiates mass surveillance and the
undermining of cryptographic solutions and standards.”

ÅTLS Working Group:
formal request to CFRG for new elliptic curves for usage in TLS!!!

ÅNIST: announces plans to host workshop to discuss new elliptic curves

http://crypto.2014.rump.cr.yp.to/487f98c1a1a031283925d7affdbdef1c.pdf

http://crypto.2014.rump.cr.yp.to/487f98c1a1a031283925d7affdbdef1c.pdf

Pre-Snowden suspicions re: NIST (and their curves)

Å2013 - Bernstein and Lange: “Jerry Solinasat the NSA used this [random
method] to generate the NIST curves … or so he says…”

Å2008 ςKoblitzand Menezes: “However, in practice the NSA has had the
resources and expertise to dominate NIST, and NIST has rarely played a
significant independent role.”

Å2007 ςShumow and Ferguson: “We don’t know how ὗ Ὠὖwas chosen,
so we don’t know if the algorithm designer [NIST] knows [the backdoor] Ὠ.”

Å1999 ςScott: “So, sigh, why didn't they [NIST] do it that way? Do they want to
be distrusted?”

NIST’s CurveP256: one-in-a-million?

Prime characteristic: ὴ ς ς ς ς ρ

Elliptic curve: ὉȾ╕ : ώ ὼ σὼ ὦ

Curve constant: ὦ

Seed: ί c49d360886e704936a6678e1139d26b7819f7e90

“Consider now the possibility that one in a million of all curves have an exploitable structure
that "they" know about, but we don't.. Then "they" simply generate a million random seeds
until they find one that generates one of "their" curves…”

{Ŏƻǘǘ ΨффΥ

Rigidity

ÅGive reasoning for all parameters and minimize “choices” that could
allow room for manipulation

ÅHash function needs a seed (digits of Ὡȟ“, etc), but do choice of seed
and choice of hash function themselves introduce more wiggle room?

ÅGoal: Justify all choices with (hopefully) undisputable efficiency
arguments

e.g. choose fast prime field and take smallest curve constant that gives
``optimal’’ group order/s [Bernstein‘06]

So then, what about these?

Replacementcurve Prime ▬ Constant ╫

(NEW) Curve P-256 ς ς ς ς ρ 2627

(NEW) Curve P-384 ς ς ς ς ρ 14060

(NEW) Curve P-521 ς ρ 167884

ÅSame fields and equations (ὉḊώ ὼ σὼ ὦ) as NIST curves

ÅBUT smallest constant ὦ(RIGID) such that ΠὉand ΠὉᴂboth prime

ÅSo, simply change curve constants, and we’re done, right???

(Our) Motivations

1. Curves that regain confidence

- rigid generation / nothing up my sleeves
- public approval and acceptance

2. 15 years on, we can do so much better than the NIST curves
(and this is true regardless of NIST-curve paranoia!)

- side-channel resistance
- faster finite fields and modular reduction
- a whole new world of curve models

3. ²ƘŜǘƘŜǊ ƛǘΩǎ ŎǊƛŎƪŜǘ ƻǊ ŎǊȅǇǘƻΣ ŀ ǇǊƻǇŜǊ ƎŀƳŜ ƴŜŜŘǎ ǎŜǾŜǊŀƭ ǇƭŀȅŜǊǎΧ

The players

ÅAranha-Barreto-Pereira-Ricardini: M-221, M-383, M-511, E-оунΣΧ

ÅBernstein-Lange: Curve25519, Curve41417, E-рнмΣΧ

ÅBos-Costello-Longa-Naehrig: the NUMS curves

ÅHamburg: DƻƭŘƛƭƻŎƪǎппуΣ wƛŘƛƴƎƘƻƻŘппуΣΧ

ÅECC Brainpool: ōǊŀƛƴǇƻƻƭtнрсǘмΣ ōǊŀƛƴǇƻƻƭtоупǘмΣΧ

ÅΧ

Åyour-name-here?: your-curves-here?

The players

ÅAranha-Barreto-Pereira-Ricardini: M-221, M-383, M,511, E-оунΣΧ

ÅBernstein-Lange: Curve25519, Curve41417, E-рнмΣΧ

ÅBos-Costello-Longa-Naehrig: the NUMS curves

ÅHamburg: DƻƭŘƛƭƻŎƪǎппуΣ wƛŘƛƴƎƘƻƻŘппуΣΧ

ÅECC Brainpool: ōǊŀƛƴǇƻƻƭtнрсǘмΣ ōǊŀƛƴǇƻƻƭtоупǘмΣΧ

ÅΧ

Åyour-name-here?: your-curves-here?

Umpire Paterson
(CFRG co-chair)

Contents
PART I : CHOOSING CURVES
Speed-records and security hunches
Prime fields and modular reduction
Curve models and killing cofactors
Montgomery ladder and twist-security
Our chosen curves: the NUMS curves

PART II : IMPLEMENTING THEM
Constant-time implementations and recoding scalars
Exception-free algorithms and Weierstrass “completeness”
Performance numbers and practical considerations
Conclusions and recommendations

The last 2 years of “state-of-the-art” speeds

Å[LS‘12] (AsiaCrypt) & [LFS‘14] (JCEN) 90,000 cyc
4-GLV/GLS using CM curve over quad. ext. field

Å[BCHL‘13] (EuroCrypt) 120,000 cyc & [BCLS‘14] (AsiaCrypt) 90,000 cyc
Laddering on genus 2 Kummersurface

Å[CHS ‘14] (EuroCrypt) 140,000 cyc
2-dimensional Montgomery ladder using Q-curve over quad. ext. field

Å[OLAR‘13] (CHES) 115,000 cyc
GLS on a composite-degree binary extension field

All of the above offer 128-bit security against best known attack
BUT

None of the above have been considered in the search for new curves!!!

Security hunches killing all the fun

ÅBest known attacks against the curves on prior page are the same

ÅBUT widespread agreement that random elliptic curves over prime
fields are safest hedge for real world deployment

ÅBy “random”, I mean huge CM discriminant, huge class number, huge
MOV degree… no special structure!

ÅBasic recipe: over fixed prime field, (rigidly) find curve with “optimal”
group orders (SEA), then assert above are huge (they will be)

WARNING: ‰ “ ρππȟπππ
cyc

Security hunches killing all the fun

Contents
PART I : CHOOSING CURVES
Speed-records and security hunches
Prime fields and modular reduction
Curve models and killing cofactors
Montgomery ladder and twist-security
Our chosen curves: the NUMS curves

PART II : IMPLEMENTING THEM
Constant-time implementations and recoding scalars
Exception-free algorithms and Weierstrass “completeness”
Performance numbers and practical considerations
Conclusions and recommendations

Two prime forms analyzed

(1) Pseudo-Mersenneprimes: ▬ ♪ ♬
(2) Montgomery-friendly primes: ▬ ♪ ♫ ♬

ÅFor each security level ίɴ ρςψȟρωςȟςυφ, we benchmarked two of both:
(a) one “full bitlength” prime
(b) one “relaxed bitlength” prime

ÅIn our case, relaxed meant:
- drop one bit for pseudo-Mersenne (lazy reduction)
- drop two bits for Mont-friendly (conditional sub saved in every mul)

ÅSubject to above, security level determinesprimes
-and determined by ί
- smallest πsuch that ὴis prime and ▬ḳ ἵἷἬ

Some premature performance ratios

TargetSecurity
Level

Pseudo-Mers
Full

Pseudo-Mers
Relaxed

Mont-Friendly
Full

Mont-Friendly
Relaxed

128 1.00x 0.97x 1.00x 0.84x

192 0.94y 0.90y 1.00y 0.90y

256 0.89z 0.85z 1.00z 0.92z

Cost ratios of variable-base scalar multiplications on twisted Edwards curves at three target security levels

ÅRelaxed version naturally wins in both cases

ÅMontgomery-friendly vs. Pseudo-Mersenne not as clear cut

ÅSo what did we end up going for….???

Full length pseudo-Mersenne primes

ÅWe went for pseudo-Mersenneover Montgomery-friendly
- simpler (may depend on who you ask?)
- take a decent performance hit at 128-bit level
- closer resemblance to NIST-like arithmetic

ÅWe went for full-length over relaxed-bitlength
- take a performance hit of 2-4%
- BUT maximizes ECDLP security, maintains 64-bit alignment,

& avoids temptation to keep going lower

Security level Prime

ρςψ ς ρψω

ρως ς σρχ

ςυφ ς υφω

Arithmetic for the pseudo-Mersenne primes
ÅConstant time modular multiplication

input: π ὼȟώ ς
ὼẗώᶰἨ
Ὤẗς ὰ

ḳὬẗς ὰ Ὤς ÍÏÄς

ὰ ẗὬ

output: ὼẗώÍÏÄς

(after fixed=worst-case number of reduction rounds)

ÅConstant time modular inversion: ὥ ḳὥ ÍÏÄὴ

ÅConstant time modular square-root: Ѝὥḳὥ Ⱦ ÍÏÄὴ

ὼ ώ

ὼẗώ

ὰ Ὤ

ὰ

Ὤẗ

ὼẗώ

What primes do others like?

ÅBernstein and Lange: Curve25519, Curve41417, E-521

ὴ ς ρω, ὴ ς ρχ, ὴ ς ρ

ÅHamburg: Ed448-Goldilocks, Ed480-Ridinghood

ὴ ς ς ρ, ὴ ς ς ρ

ÅAranha-Barreto-Pereira-Ricardini: M-221, M-383, M-511 , E-382, etc

ὴ ς σ, ὴ ς ρψχ, ὴ ς ρψχ, ὴ ς ρπυ

ÅBrainpool: brainpoolP256t1, brainpoolP384t1, etc

ὴ 76884956397045344220809746629001649093037950200943055203735601445031516197751

Contents
PART I : CHOOSING CURVES
Speed-records and security hunches
Prime fields and modular reduction
Curve models and killing cofactors
Montgomery ladder and twist-security
Our chosen curves: the NUMS curves

PART II : IMPLEMENTING THEM
Constant-time implementations and recoding scalars
Exception-free algorithms and Weierstrass “completeness”
Performance numbers and practical considerations
Conclusions and recommendations

A world of curve models

ώ ὼ ὥὼ ρφὥὼ
Doubling-oriented DIK curves

ὥὼ ώ ρ Ὠὼώ
(twisted) Edwards curves

ὄώ ὼ ὃὼ ὼ
Montgomery curves

ὥὼ ώ ρ Ὠὼώ
(twisted) Hessian curves

◐ ● ╪● ╫
short Weierstrasscurves

ί ὧ ρ ᷊ ὥί Ὠ ρ
Jacobi intersections

ώ ὼ ςὥὼ ρ
Jacobi quartics

See Bernstein and Lange’s Explicit-Formulas Database (EFD) and/or Hisil’sPhD thesis

Montgomery
curves

ὄώ ὼ ὃὼ ὼ

Å Subset of curves

Å Not prime order

Å Fast Montgomery
ladder

Å Exception
free

(twisted) Edwards
curves

ὥὼ ώ ρ Ὠὼώ

Å Subset of curves

Å Not prime order

Å Fastest addition law

Å Some
have
complete
group law

Weierstrass
curves

ώ ὼ ὥὼ ὦ

Å Most general form

Å Prime order possible

Å Exceptions in group law

Å NIST and
Brainpool curves

The chosen ones

Complete addition on Edwards curves

Let Ὠ in ὑand consider Edwards curve
ὉȾὑḊὼ ώ ρ Ὠὼώ

For all (!!!) ὖ ὼȟώ ȟὖ ὼȟώ ᶰὉὑ

ὖ ὖ ȡὖ
ὼώ ώὼ

ρ Ὠὼὼώώ
ȟ
ώώ ὼὼ

ρ Ὠὼὼώώ

Denominators never zero, neutral element rational πȟρ, etc..
(Bernstein-Lange, AsiaCrypt 2007)

Edwards vs twisted Edwards
General twisted Edwards ╔╪ȟ▀Ḋ╪● ◐ ▀●◐

When ὥ ρ(Edwards!) ὉȟḊὼ ώ ρ Ὠὼώ

When ὥ ρ Ὁ ȟḊ ὼ ώ ρ Ὠὼώ

Fastest addition 8M, also (technically) incomplete when ὴḳσÍÏÄτ

(Bernstein-Lange, AsiaCrypt 2007 and Hisil et al., AsiaCrypt 2008)

(Hisil et al., AsiaCrypt 2008)

Fastest complete addition (for Ὠ) 9M+1d

ÅEdwards completeness highly desirable, but so are the fast (twisted Edwards) formulas!
ÅIncomplete formulas still work for any ╟,╠where ╟ ╠Σ ŀƴŘ ōƻǘƘ ƘŀǾŜ ƻŘŘ ƻǊŘŜǊΧ

Killing cofactors and the fastest formulas

Å(Twisted) Edwards curves necessarily have a cofactor of at least 4,
so assume ΠὉ τὶwhere ὶis a large prime

ÅUsers will check that ὖᶰὉ, but cannot easily check whether ὖhas order
ὶȟςὶ, or τὶ

ÅIf secret scalars Ὧare in ρȟὶ, then attackers could send ὖof order τὶ, and
on receiving Ὧὖ, compute ►▓╟ ▓ἵἷἬ╟ᶰὉὊ τ to reveal

ὯÍÏÄτ (i.e. the last two bits of Ὧ)

ÅRECALL: the fastest additions will work for all ὖ ὗ, both of odd order…

Killing cofactors and the fastest formulas
Our approach

- incomplete twisted Edwards curve
Ὁ ȟḊ ὼ ώ ρ Ὠὼώ

- modified set of scalars
Ὧᶰρȟςȟȣὶ ρ ᴾὯᶰτȟψȟτὶτ

- initial double-double
ὖᶰὉᵐὗḧ τὖᶰὉὶ

- fastest formulas to compute
Ὧὖ Ὧὗ

“specified curve” incomplete, but uses fastest formulas and stays on one curve

Killing cofactors and the fastest formulas

IŀƳōǳǊƎΩǎ ŀǇǇǊƻŀŎƘ (http://eprint.iacr.org/2014/027)

- complete Edwards curve
ὉȟḊὼ ώ ρ Ὠὼώ

- use 4-isogeny to incomplete twisted:
‰ḊὉȟᴼὉ ȟ

- fastest formulas to compute:
Ὧὖon Ὁ ȟ (since ÉÍ‰ Ὁ ȟ ὶ)

- use dual to come back to Ὁȟ
‰ḊὉ ȟ ᴼὉȟ

“specified curve” complete and uses fastest formulas, but isogeny needed

http://eprint.iacr.org/2014/027

Killing cofactors and the fastest formulas

Bernstein-Chuengsatiansup-Lange approach (Curve41417)

- complete Edwards curve
ὉȟḊὼ ώ ρ Ὠὼώ

- kill torsion with doublings
Ὧᶰψȟρφȟȣ

- stay on Ὁȟ, at the expense of 1M per addition
but compare 3727M to 3645M (‰ ‰

“specified curve” is complete, stay on it (simple), but slightly slower additions

Contents
PART I : CHOOSING CURVES
Speed-records and security hunches
Prime fields and modular reduction
Curve models and killing cofactors
Montgomery ladder and twist-security
Our chosen curves: the NUMS curves

PART II : IMPLEMENTING THEM
Constant-time implementations and recoding scalars
Exception-free algorithms and Weierstrass “completeness”
Performance numbers and practical considerations
Conclusions and recommendations

Textbook arithmetic on ώ ὼ ὥὼ ὦ

ὼ ȟώ Ὀὄὒὼȟώ ὼ ȟώ ὃὈὈὼȟώȟὼȟώ

Montgomery’s arithmetic on ὄώ ὼ ὃὼ ὼ

ὼ Ὀὄὒὼ ὼ ὈὍὊὊὃὈὈὼȟὼȟὼ

Differential additions …

vs.

Å“Opposite” ώ’s give different ὼ-coordinate than “same-sign” ώ’s

ÅDecide with ὼ-coordinate of difference: ὼ ὈὍὊὊὃὈὈὼȟὼȟὼ

ÅInvariant: in ὼὖȟὯᵐὼ Ὧὖ , keep this difference fixed as ὼὖ

ÅIteration: at each intermediate step, we always have ὼ άὖ, ὼ ά ρὖ …
so we always add them and double one (depends on binary rep. of k) to preserve
the invariant

… and the Montgomery ladder

Twist-security

ÅLadder gives scalar multiplications on Ὁȡὄώ ὼ ὃὼ ὼas
ὼ Ὧὖ ὒὃὈὈὉὙὼὖȟὯȟὃ

ÅDoes not depend on ὄ, so works on Ὁᴂȡὄᴂώ ὼ ὃὼ ὼfor any ὄ

ÅUp to isomorphism, there are only two possibilities for fixed ὃȡ
Ὁand its quadratic twist Ὁᴂ

ÅSo if Ὁand Ὁᴂare both secure, no need to check ὖᶰὉfor any ὼὖ ᶰὑ,
as ὒὃὈὈὉὙὼȟὯȟὃ gives discrete log on Ὁor Ὁᴂfor all ὼɴ ὑ

ÅTwist-security only really useful when doing ●-only computations, but
why not have it anyway?

Contents
PART I : CHOOSING CURVES
Speed-records and security hunches
Prime fields and modular reduction
Curve models and killing cofactors
Montgomery ladder and twist-security
Our chosen curves: the NUMS curves

PART II : IMPLEMENTING THEM
Constant-time implementations and recoding scalars
Exception-free algorithms and Weierstrass “completeness”
Performance numbers and practical considerations
Conclusions and recommendations

The NUMS curves
Security
▼

Prime
▬

Weierstrass
╫

Twisted Edwards
▀

Montgomery
═

ρςψς ρψω ρυςωφρ ρυστς φρσχπ

ρωςς σρχ στυφψ σσσρωτ ρσσςχχψ

ςυφς υφω ρςρςτσ φσχφπψ ςυυπτστ

ÅPrimes: Largest ὴ ς ḳσÍÏÄτ
(fun fact: in these cases, largest primes full stop)

ÅWeierstrass: Smallest ȿὦȿsuch that ΠὉand ΠὉᴂboth prime

ÅTwisted Edwards: Smallest Ὠ πsuch that ΠὉand ΠὉᴂboth 4 times a prime, and
Ὠ πcorresponds to ὸ πȢ

ÅReminder: there are 6 “chosen” curves above, but in paper 26 are benchmarked

Small constants all round for ὴḳσÍÏÄτ

ὓ Ḋώ ὼ ὃὼ ὼ Ὁȟȡὥὼ ώ ρ Ὠὼώ

ὓ

ὓ

twist

ḙ

ḙ

Ὁ ȟ

Ὁ ȟȾ

isogeny

isogeny

Ὁ ȟ

Ὁ ȟ

Ὁȟ

Ὁȟ

Ὠ (big) Ὠ (small)

Searches minimize ȿὃȿwith ὃḳςÍÏÄτ

Upshot: search that minimizes Montgomery constant size also minimizes size of both
twisted Edwards and Edwards constants (see Lemmas 1-3)

twist Both non-squares

Contents
PART I : CHOOSING CURVES
Speed-records and security hunches
Prime fields and modular reduction
Curve models and killing cofactors
Montgomery ladder and twist-security
Our chosen curves: the NUMS curves

PART II : IMPLEMENTING THEM
Constant-time implementations and recoding scalars
Exception-free algorithms and Weierstrass “completeness”
Performance numbers and practical considerations
Conclusions and recommendations

Constant time implementations

ÅConstant time: all computations involving secret data must exhibit regular
execution to provide protection against timing and cache attacks

ÅNo data-dependent branches or table lookups depend on scalar Ὧ

ÅMost naïve version: double-and-add Ą double-and-always-add

Ὧ [−, 0, 0, 1, 0, 1, …]
double-and-always-add: initialize ὗᴺὖ [-,

compute ςὗȟςὗ ὖ ὗᴺ ςὗ 0,
compute ςὗȟςὗ ὖ ὗᴺ ςὗ 0,

computeςὗȟςὗ ὖ ὗᴺ ςὗ ὖ 1,

computeςὗȟςὗ ὖ ὗᴺ ςὗ 0,
computeςὗȟςὗ ὖ ὗᴺ ςὗ ὖ 1, ..

Fixed-window recoding for variable-base
Å“Always-add” obviously brings in solid performance penalty: adding twice as

much as usual… BUT not when using bigger/optimal windows!!!

Χр 5.[Ωǎ ᴼADD (ςφὖ)ᴼр 5.[Ωǎ ᴼADD(ςρὖ) ᴼр 5.[Ωǎ ᴼADD(ςὖ)Χ

ÅBasic/naïve: pre-compute and store P,[2]P,…,[30]P, [31]P

ÅChances of 5 zeros in a row = 1/32, but we must still always add something…

[…, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0,…]

[…, 26, 21, 2,…]

ύ ρ

ύ υ
[…, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0,…]

Protected “odd-only” fixed-window recoding algorithm

ÅWindow width ύ: recodes every odd scalar Ὧᶰρȟὶ into ὸ ρ odd

values, i.e. Ὧ ὯȟȣȟὯ , where ὸ

ÅEach recoded value is an integer in Ὧᶰ ρȟσȟυȟȣȟς ρ
(only half the precomputed values needed, and there are no zeros)

Åe.g. 256-bit scalars, ύ υoptimal for us, 53 windows:
- precompute table ὖȟσὖȟυὖȟȣȟσρὖ (1 DBL, 15 ADDS)
- select first value as Ὧὖ
- 5 5.[ΩǎAODD(Ὧ ὖ) ᴼ… ᴼ5 5.[Ωǎ ᴼADD (Ὧὖ)

Total: υςυ ρ ςφρDBL’s, υς ρφ φψADD’s.

ÅSame total and sequence, whether Ὧ ρ, Ὧ ὶ, or anything in between

Much more to constant-time implementations

ÅLŘŜƴǘƛŎŀƭ ǎŜǉǳŜƴŎŜ ƻŦ ƻǇŜǊŀǘƛƻƴǎ ƛǎ Ƨǳǎǘ ǘƘŜ ōŜƎƛƴƴƛƴƎΧ

e.g: recoding was for odd scalars only: negate every scalar, mask in
the odd one, negate every “final” point, mask correct result…

e.g: recoding the scalars themselves must be constant time

e.g: must access/load every lookup element, every time, and mask
out correct one

see http://eprint.iacr.org/2014/130.pdf and
http://research.microsoft.com/en-us/projects/nums/

for solutions to these problems and more…

ÅThe recoding is mathematically correct, and facilitates constant-time
implementations, BUT only assuming the ECC formulas do their job!

http://eprint.iacr.org/2014/130.pdf
http://research.microsoft.com/en-us/projects/nums/

Contents
PART I : CHOOSING CURVES
Speed-records and security hunches
Prime fields and modular reduction
Curve models and killing cofactors
Montgomery ladder and twist-security
Our chosen curves: the NUMS curves

PART II : IMPLEMENTING THEM
Constant-time implementations and recoding scalars
Exception-free algorithms and WeierstrassάŎƻƳǇƭŜǘŜƴŜǎǎέ
Performance numbers and practical considerations
Conclusions and recommendations

Guaranteeing exception-free routines

ÅThe running multiple ὗ άὖof ὖcould be one of the values
ὖȟσὖȟȣȟς ρὖin the lookup table, or their inverse

ÅNot a problem if addition formulas are complete, but recall that:

(i) complete Edwards additions are not the fastest
(ii) typical Weierstrass additions far from complete

ÅNot only variable-basescenario Ὧὖfor ὖ(as before), but fixed-base
scenario where ὖis known (precomps mean larger lookup table – more
potential trouble)

ÅCan only claim “constant-time” if all combinations of Ὧand ὖcompute
Ὧὖwithout exception

Guaranteeing exception-free routines
ÅPropositions 4,6: (under prior recoding) Weierstrass and twisted

Edwards variable-basescalar multiplications will compute without
exception if:
fastest dedicated addition formulas are used throughout, exceptthe
final addition, which needs to be unified (for our proof to go through)

ÅPropositions 5,7: (under fixed-base recoding) Weierstrass and twisted
Edwards fixed-base scalar multiplications will compute without
exception if:
complete additions are used throughout (for our proof to go through)

Fine with me…
Unified?
Complete?

Weierstrass completeness

ÅImpossibility Theorem (Bosma-Lenstra): for general elliptic curves, we need
to compute at least two sets of explicit formulaeto guarantee every sum is
computed:

i.e. no Ὢ, Ὢ, Ὢ such that

ὢ Ὢ ὢȟὣȟὤȟὢȟὣȟὤ
ὣ Ὢ ὢȟὣȟὤȟὢȟὣȟὤ
ὤ Ὢ ὢȟὣȟὤȟὢȟὣȟὤ

computes the correct sum ὢȡὣȡὤ ὢȡὣȡὤ + ὢȡὣȡὤ for all
points on a general curve

ÅNeed Ὢ,Ὢ,Ὢ and Ὢᴂ, Ὢᴂ, Ὢᴂ, where at least one set will always do the
job…

Weierstrass completeness

Åe.g. specialized to ώ ὼ ὥὼ ὦ, and in homogeneous space, the sum
ὢȡὣȡὤ + ὢȡὣȡὤ will be at least one of ὢȡὣȡὤ or ὢᴂȡὣᴂȡὤᴂ:

ÅFor our ὥ σWeierstrass curves, our first attempt to optimize the above
gave ╜ ╜╫ (compared to ╜for dedicated projective additions)

ÅAND the true cost ratio would be far worse than the multiplications indicate

… there’s got to be a better way…

Weierstrass “pseudo-completeness”

ÅWe give a “pseudo-complete’’ addition algorithm for general Weierstrass curves

ÅExploits similarity in doubling and addition formulas (two main cases)

ÅResemblance to Chevallier-Mames, Ciet, and Joye: “Side-channel Atomicity”, but
they give separate routines – we merge into one with masking

ÅEdwards elegance unrivalled, but this gets the job done for Weierstrass!

ÅJac+aff (dedicated) = 8M+3S, Jac+aff (complete-masking) = 8M+3S+ꜗ (ςπϷ

(ȟ

toCompare

Contents
PART I : CHOOSING CURVES
Speed-records and security hunches
Prime fields and modular reduction
Curve models and killing cofactors
Montgomery ladder and twist-security
Our chosen curves: the NUMS curves

PART II : IMPLEMENTING THEM
Constant-time implementations and recoding scalars
Exception-free algorithms and Weierstrass “completeness”
Performance numbers and practical considerations
Conclusions and recommendations

TLS handshake with PFS: ECDH(E)-ECDSA

ÅVariable-base: Ὧȟὖᵐ Ὧὖ (ὖnot known in advance)

- both sides of static DH
- half of ephemeral DH(E)
- constant time (recoding as before, final addition unified)

ÅFixed-base Ὧȟὖᵐ Ὧὖ (ὖknown in advance)
- other half of ephemeral DH(E)
- ECDSA signing
- constant time (fixed-base recoding, all additions complete)

ÅDouble-scalar ὥȟὦȟὖȟὗᵐ ὥὖ ὦὗ (ὖknown in advance, ὗnot)

- ECDSA verification
- constant time unnecessary!

Three scenarios

ÅFastest report NIST P-256 (Gueron & Krasnov ‘13): τππὯcycles var-based

ÅFixed-base may get a fair bit faster in all scenarios, unified/complete adds
not necessary?? [Hamburg, a few days ago, private communication]

ÅNo assembly above field layer (solid gains possible for our curves)

ÅCompare Curve25519 ρωτȟπππto twisted Edwards ςρφȟπππ(sandy)

Clock cycles (for various scalar multiplications
Intel Core i7-2600 Sandy Bridge compiled with Linux / Visual Studio

Security
Level

Prime Curve Variable
-base

Fixed
-base

Double
-scalar

128 ὴ ς ρψω
Weierstrass

twisted Edwards
270
216

107
82

289
231

192 ὴ ς σρχ
Weierstrass

twisted Edwards
714
588

252
201

758
614

256 ὴ ς υφω
Weierstrass

twisted Edwards
1,504
1,242

488
391

1,596
1,308

Contents
PART I : CHOOSING CURVES
Speed-records and security hunches
Prime fields and modular reduction
Curve models and killing cofactors
Montgomery ladder and twist-security
Our chosen curves: the NUMS curves

PART II : IMPLEMENTING THEM
Constant-time implementations and recoding scalars
Exception-free algorithms and Weierstrass “completeness”
Performance numbers and practical considerations
Conclusions and recommendations

Our work (in a nutshell)

Consider different families of primes for fast arithmetic

twisted
Edwards curves

Constant-time, exception-free algorithms to do crypto

Weierstrass
curves

128-bit security 192-bit security 256-bit security

Demonstrate potential of new curves inside the
Transport Layer Security (TLS) protocol

The sell: what did we do differently?

ÅModular/consistent implementation across three security levels
- twisted Edwards curves generated and implemented the same way
- same for Weierstrass

ÅAlso considered/implemented new/better prime-order curves
- concrete performance comparison
- true gauge on pros and cons of shifting to Edwards

ÅTwo different styles of primes/field arithmetic
- Montgomery and Pseudo-Mersenne
- Stayed fixed on “full-length” Pseudo-Mersenne primes

ÅChoose Edwards everywhere over Montgomery ladder
- Consistency and no real performance hit
- More versatile

What could we do differently?

ÅDefine curves as Edwards, not twisted
- Douglas Stebila (8 Aug, 2014) on CFRG mailing list:

“implementations [should] readily expose both a scalar point
multiplication operation and a point addition operation”

- Perhaps better to define as Edwards equipped with complete add
(and optionally use Hamburg’s isogeny trick?)

- Fortunately for σÍÏÄτ, we get minimal Ὠin either form (just rewrite)

ÅRemove ▀ with ◄ restriction
- Mike Hamburg (12 Aug, 2014) on CFRG mailing list:

“If these requirements become final, then surely the complete
curves mod the Microsoft primes with a=1 and no restriction on
the sign of d (choose the one with q<p) should be in the running”.

- Unrestricted curves in our first preprint, imposed Ὠ πin v2, go back?

… see also …

ÅReport:
http://eprint.iacr.org/2014/130.pdf

ÅMSR ECC Library:
http://research.microsoft.com/en-us/projects/nums/

ÅSpecification of curve selection:
http://research.microsoft.com/apps/pubs/default.aspx?id=219966

ÅIETF Internet Draft (authored by Benjamin Black)
http://tools.ietf.org/html/draft-black-numscurves-02

http://eprint.iacr.org/2014/130.pdf
http://research.microsoft.com/en-us/projects/nums/
http://research.microsoft.com/apps/pubs/default.aspx?id=219966
http://tools.ietf.org/html/draft-black-numscurves-02

