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June 2013 — the Snowden leaks

&he New HJork Eimes

“ .the NSA had written
the [crypto] standard
and could break .




Post-Snowden responses

ABruceSchneier “I no longer trust the constants. | believe the NSA has
mani pul atted t hem..

ANigel Smart“Shame on”t he NSA..

AIACR“The membership of the IACR repudiates mass surveillance and the
undermining of cryptographic solutions and standards

ATLS Working Group:
formal request to CFRG for new elliptic curves for usage in TLS!!!

ANISTannounces plans to host workshop to discuss new elliptic curves
http://crypto.2014.rump.cr.yp.to/487f98c1a1a031283925d7affdbdeflc.pdf



http://crypto.2014.rump.cr.yp.to/487f98c1a1a031283925d7affdbdef1c.pdf

Pre-Snowden suspicions re: NIST (and their curves)

A2013- Bernstein and Lange-JerrySolinasat the NSA used this [random
met hod] to generate th® NIST cur ve

A2008¢ Koblitzand Menezes“However, in practice the NSA has had the
resources and expertise to dominate NIST, and NIST has rarely played a
significant independent rolé.

A2007¢ Shumow and FergusorfiWe don’ t Uk n@uwashocbasen,
so we don’t know I f the algor iQt”’h m

A1999c¢ Scott:* S sigh, why didn't thejNIST] dat that way? Do they want to
be distruste@ ”



NIST’s CurveP256: one-in-a-million?

Prime characteristic: n ¢ C C C D
Elliptic curve: OoF 'w w 0w &

Curve constant: & \/ O

Seed: i c49d360886e704936a6678e1139d26b7819f7e90

{0200 WYdhohY

“ C o n sawdhe possibility that one in a million of all curves have an exploitable structure
that "they" know about, but we don't.. Théthey" simply generate a million random seeds
until they find one that generates one of "thet"u r v e s ...”



Rigidity

AGive reasoning for all parameters and minimize “choices” that could
allow room for manipulation

AHash function needs a seed (digits of ‘A1, etc), but do choice of seed
and choice of hash function themselves introduce more wiggle room?

AGoal:Justify all choices with (hopefully) undisputable efficiency
arguments

e.g. choose fast prime field and take smallest curve constant that give
copt i marter/sB egrrnosutpei n‘ 0 6 ]



So then, what about these?

Replacementurve Constant}

(NEW) Curve P-256 ¢ C C C P 2627
(NEW) Curve P-384 ¢ C C C o 14060
(NEW) Curve P-521 C 0 167884

ASame fields and equations (ODw @ 0 & @) as NIST curves
ABUT smallest constant W(RIGID) such that MOand MO &oth prime

ASo, simply change curve constants, and we’re done, right???



(Our) Motivations

1. Curves that regain confidence

- rigid generation / nothing up my sleeves
- public approval and acceptance

2. 15 years on, we can do so much better than the NIST curves
(and this Is true regardless of Ni&lirve paranoia!)

- side-channel resistance
- faster finite fields and modular reduction
- a whole new world of curve models

3.2 KSOUKSNI AGQa ONROTSUO 2NJ ONBLII2Z |



The players

AAranhaBarreto-PereiraRicardini M-221, M383, M511, Eo y H ¥ X
ABernsteinLange:Curve25519, Curve41417-pEH M = X
ABosCostelleLongaNaehrig:the NUMS curves

AHamburgD2f RAf 201 anny > WARAYIKZ22Rnny:
AEC@rainpooto NI Ay 1LI22ft HpclUmMZ ONIAYLIZ2Z2Tt
AX

Ayour-name-here? your-curveshere?



The players

AAranhaBarreto-PereiraRicardini M-221, M-383, M,511, B yI |
ABernsteinLange:Curve25519, Curve41417-pEH M 5 X L
ABosCostelloLongaNaehrig:the NUMS curves .
AHamburgD2 f RAf 207 anny > wiRAyY 3K |
AEC@rainpoot 6 NI Ay LJ22f t HpcUimMZ 0 NI

Ayour-name-here? your-curveshere?

Umpire Paterson
(CFRG co-chair)
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The last 2 years of “state-of-the-art” speeds

A[LS‘12] (AsiaCrypt& [LFS14] (JCEN
4-GLV/GLS using CM curve over quad. ext. field

A[BCHL‘13] (EuroCrypt & [BCLS‘14] (AsiaCrypt)
_addering on genus Rummersurface

A[CHS “14] (EuroCrypt
2-dimensionalMontgomery ladderusing Qcurve over quad. ext. field

A[OLAR‘13] (CHEB
GLS on a composHeaegree binary extension field

All of the above offer 128-bit security against best known attack
BUT
None of the above have been considered in the search for new curvesl!!!



Security hunches killing all the fun

ABest known attacks against the curves on prior page are  the same

ABUT widespread agreement that random elliptic curvesver prime
flelds are safest hedge for real world deployment

ABy “random”, | mean huge CM discriminant, huge class number, huge
MOV degree... no special structure!

ABasic recipeover fixed prime field, (rigidly) find curve with “optimal”
group orders (SEA), then assert above are huge (they will be)



Security hunches killing all the fun

WARNING: \96Q \ N Wn
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Two prime forms analyzed

(1) PseudeMersenneprimes: N
(2) Montgomeryfriendly primes: - (7 5

AFor each security level i N p ¢l it U pwe benchmarked two of both:
(a) one “full bitlength” prime
(b) one “relaxed bitlength” prime

Aln our case, relaxed meant:
- drop one bit for pseudo-Mersenne (lazy reduction)
- drop two bits for Mont-friendly (conditional sub saved in every mul)

ASubiject to above, security level determinesprimes
-] and] determined by i N
-smallest]  Ttsuch thatnisprimeandmsk | | "H



Some premature performance ratios

TargetSecurity | PseudoeMers PseudeMers Mont-Friendly | Mont-Friendly
Level Full Relaxed Full Relaxed

128 1.00x 0.97x 1.00x 0.84x
192 0.94y 0.90y 1.00y 0.90y
256 0.89z 0.85z 1.00z 0.92z

Cost ratios of variabtbase scalar multiplications on twisted Edwards curves at three target security leve

ARelaxed version naturally wins in both cases
AMontgomery-friendly vs. Pseudo-Mersenne not as clear cut
ASo what did we end up going for....???



Full length pseudo-Mersenne primes

AWe went for pseudeMersenneover Montgomeryfriendly
- simpler (may depend on who you ask?)
- take a decent performance hit at 128-bit level
- closer resemblance to NIST-like arithmetic

AWe went for full-length over relaxeebitlength
- take a performance hit of 2-4%
- BUT maximizes ECDLP security, maintains 64-bit alignment,
& avoids temptation to keep going lower

Security level

PGy s PYw
P WG s 0P X
CuU @ C VNONA



Arithmetic for the pseudo-Mersenne primes

AConstant time modular multiplication NS DS
nput: U W T

wtwN 'H

. o o G Emmenmmm
k @¢ o dg¢ 7)1 AQ 7
a 0 & ]

O

output: otwl I Ac f L O

(after fixed=worst-case number of reduction rounds)

AConstant time modular inversion: ® ko 1T1TA
AConstant time modular squareoot: Mok o T 11 A



What primes do others like?

ABernstein and LangeCurve25519, Curve41417-521
n G pPw N G P X n ¢ P

AHamburg: Ed448Goldilocks, Ed48®Ridinghood
n ¢ C P, N G C P

A AranhaBarreto-PereiraRicardini M-221, M-383, M-511 |, E382 etc
n ¢ g, n ¢ PUKX, n ¢ pPUX N G pTU

ABrainpool brainpoolP256t1, brainpoolP384t%ktc

N 76884956397045344220809746629001649093037950200943055203735601445031516197751
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A world of curve models

4 ® =+ @ -H-

short Welerstrasscurves

W W W p
, o~ Jacobi quartics
Ww W p Quw o ‘ o ‘
(twisted) Hessian curves ow W 0w W
Montgomery curves
(twisted) Edwards curves W W W PPWW
Doubling-oriented DIK curves

~y

i w p. Q p
Jacobi intersections

See Bernstei n -BomiladdatamagedEFD) akdibip | SPh® thesis



The chosen ones

Weierstrass
curves

Most general form
Prime order possible
Exceptions in group law

NIST and
Brainpool curves

To To Do I

Montgomery
curves

0w W 0w

o To Io Do

(twisted) Edwards
curves

—)

Subset of curves
Not prime order

Fast Montgomery
ladder

Exception
free

To o To Ix

Subset of curves
Not prime order
Fastest addition law

Some
have
complete
group law




Complete addition on Edwards curves

Let Q in U and consider Edwards curve
O Do P Qw
Forall (I 0 (who)  (@who)N 0V
- WW WW . W W

0 U

Denominators never zero, neutral element rationa(rip), etc..
(Bernstein-Lange, AsiaCrypt 2007)



Edwards vs twisted Edwards

General twisted Edwards — pumDfe ¢ H, .

When @ p (Edwards!) OrD @ p W

Fastest complete addition (for Q ) OM+1d
(Bernstein-Lange, AsiaCrypt 2007 and Hisil et al., AsiaCrypt 2008)

When®w p OrDo W p ow
Fastest addition 8M, also (technically) incomplete when ) k ol T A
(Hisil et al., AsiaCrypt 2008)

A Edwards completeneskighly desirable, but so art¢he fast (twisted Edwards) formulas!
A Incomplete formulas still work for anyf, |Fwhere || &= I yR 020K KI @



Killing cofactors and the fastest formulas

A(Twisted) Edwards curves necessarily have a cofactor of at least 4,
soassume MO T iwherel is alarge prime

AUsers will check that 0 N 'O but cannot easily check whether 0 has order
Ihc jort i

Alf secret scalars Qare in ph , then attackers could send U of order T | and
on receiving "QU, compute[> |— - H— O 'O 1 toreveal

AT A (i.e. the last two bits of Q

ARECALL: the fastest additions will work for all 0 0, both of odd order...



Killing cofactors and the fastest formulas
Our approach

- incomplete twisted Edwards curve
O;yD® W p Mw
- modified set of scalars
O [pheBi p] PO [thyw i 1]

- initial double-double o 3
ONOmM oV h [t]JoN O]
- fastest formulas to compute

Q0 QU

“s pe ciufr madhplete, but uses fastest formulas and stays on one cl



Killing cofactors and the fastest formulas

| | YO dzNH QA& (http:/dnihEdcrOrg/2014/027 )

- complete Edwards curve
Oy D 0w p ow

- use 4-isogeny to incomplete twisted:

%0D0O h O 0 h
- fastest formulas to compute:

[[Q0 on O (sinceE(%9 ©O » 1)
- use dual to come back to O,

% DO ; © Op

“ s pe ciufr complete and uses fastest formulas, but isogeny needec


http://eprint.iacr.org/2014/027

Killing cofactors and the fastest formulas

BernsteinChuengsatianswhange approach (Curve41417)

- complete Edwards curve
Op D 0w p Qow
- kill torsion with doublings o
VYo 68 |

- stay on Oy, at the expense of 1M per addition
but compare 3727M to 3645M ( %0 %o

“ s pe ciufriveddiplete,sstay on it (simple), but slightly slower additions



Contents
PART | : CHOOSING CURVES

Montgomery ladder and twistsecurity

PART Il : IMPLEMENTING THEM



|
-
-~ |
-
O I
|

(X175 Y21 7)

006 I hw

5

7
/‘GXPnyP)

(XT+PYYT1P)

® o 0 O'@v hod hid hed



Montgomery’s arithmeticon 0 @ 0O

XT X[2]T XPp XT XT+P

@ O06 0 0"'0"0"06 M ho



Differential additions ...
SN / /
o 1Y vs. )% _ee §-
/ \ \ \

A“Opposite” Ws give different tycoordinate than “same-sign” Js
ADecide with Gxcoordinate of difference: ® 0"'0"0"00 I hw

... and the Montgomery ladder

Alnvariant:in o(0)hQ™ ([[Q0) , keep this difference fixed as ¢ U

Alteration: at each intermediate step, we always have aX[¢ ]0), @ [ pl0 ..
so we always add them and double one (depends on binary rep. of k) to preserve
the invariant



Twist-security =77

Aladder gives scalar multiplicationson 06 =~ @ 0w  was
o([Q0) 0 o0 OO0 @Y)hoo
ADoes not depend on 0, soworkson CsO0a@ @ 0w  wforany O

AUp to isomorphism, there are only two possibilities for fixed 0d,
Oand its quadratic twist O a2

ASo if Oand O ae both secure, no need to check 0 N ‘Oforany c{0) N 0,
asU 0 OO0O'@htdo gives discrete log on Oor O for all N U

ATwist-security only really useful when doing-only computations, but
why not have it anyway?
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The NUMS curves

\ 4 — 'H‘ - —

PG WG PYw PUCWPP PULGCT G gpoxT
P WG G OpX OTULUQY OCoopPpwW®™H poocxxY
U@ C LOW PCPCTO QGOXGTEm CUUTTOT

APrimes:Largest) ¢ kol T A
(fun fact in thesecases, largest primes full sfop

AWeierstrass Smallest Sxssuch that MOand MO &th prime

ATwisted EdwardsSmallest Q  Ttsuch that MOand MO &th 4 times a prime, and
Q Ticorrespondsto 0 T8

AReminder:there are 6 “chosen” curves above, but in paper 26 are benchmarked



Small constants all round forn k al | A

0 Dw ® 0w Opdoad 0w p Dw
Searches minimize ¥swith0 k ¢1 1T A
0 —  (big Q — (small)
o . isogeny . .
U < Q > O F] “ > O F] OF]

twist twist Both non-squares
o . isogeny | -~ O« /
U < e > O F] 7 < —> O h O h

Upshot:search that minimizes Montgomery constant size also minimizes size of both
twisted Edwards and Edwards constants (see Lemmas 1-3)
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Constant time implementations

AConstant time:all computations involving secret data must exhibit regular
execution to provide protection against timing and cache attacks

ANo data-dependent branches or table lookups depend on scalar Q
AMost naive version: doubleand-add 4 doubleand-alwaysadd

Q [-001,01,..]

doubleand-alwaysadd: initialize) N 0

compute [¢]JORc]O 0 ON [g]u
compute [cJohHc]o U LN [c]u
c o mp [c0OHcC]O 0 ON [c]0 O
c omp [cOHC]O 0 0N [c]0
c o mp (cl0OHcC]O 0 ON [c]0 O




Fixed-window recoding for variable-base

A“Always-add” obviously brings in solid performance penalty: adding twice as
much as usual... BUTnhot when using bigger/optimal windows!!!

6 p [.,1,1,01,01,0,1,0,1,0,0,0,1,0,.]
..11,1,0,1,0,(1,0,1,0,1,[0,0,0,1, 0}...]

e ¥
o [.26,21,2,..] )
Xp 59 AODEc )©° p 5 9ADE(q p0)° p 5 °[ADIE[c]U)X

ABasic/naive: pre-compute and store P,[2]P....,[30]P, [31]P

AChances of 5 zeros in a row = 1/32, but we must still alwaysadd something...



Protected “odd-only” fixed-window recoding algorithm

AWindow width 0 : recodes every odd scalar Q' ph into 60 p odd
values,i.e. Q QM hQ , where 0 [(—)}

AEach recoded value is an integerin QN ph oh ulB h ¢ P
(only half the precomputed values needed, and there are no zeros)

Ae.g. 256-bit scalars, U L optimal for us, 53 windows:
- precompute table OHa]JoHv|]oB Ho v (1 DBL, 15 ADDS)
- select first value as TQN ¥ .
-55 ., [OQIEI]""Q V)OO ..0 55 . [OQQ@D(TQL’))
Total: VC U pPp C@PBLs,uc p ® @ YDD'’s.

ASame total and sequence, whether Q p,Q i, or anything in between



Much more to constant-time implementations

ALRSYUAOFft &aSIdzZSyOS 2F 2LISN)I OA2Ya
e.g recoding was for odd scalars only: negate every scalar, mask in
the odd one, negate every “final” point, mask correct result...

e.g recoding the scalars themselves must be constant time

e.g must access/load every lookup element, every time, and mask
out correct one

see http://eprint.iacr.org/2014/130.pdf and
http://research.microsoft.com/en-us/projects/nums/
for solutions to these problems and more...

AThe recoding is mathematically correct, and facilitates constdinte
Implementations, BUT only assuming the ECC formulas do their job!


http://eprint.iacr.org/2014/130.pdf
http://research.microsoft.com/en-us/projects/nums/
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Exceptionfree algorithms andWeierstrassdt O2 Y LI SO Sy S & 4 ¢



Guaranteeing exception-free routines

AThe running multiple 0 [& ]0 of U could be one of the values
0H o]0 Hc p]0 in the lookup table, or their inverse

ANot a problem if addition formulas are complete, but recall that:

(i) complete Edwards additions are not the fastest
(ii) typical Weierstrass additions far from complete

ANot only variable-basescenario ["Q0 for U (as before), but fixed-base
scenario where U is known (precomps mean larger lookup table — more

potential trouble)

ACan | only claim “constant-time” if all combinations of ‘Qand 0 compute
Q0 without exception



Guaranteeing exception-free routines

APropositions 4,6: nder prior recoding) Weierstrass and twisted
Edwards variable-basescalar multiplications will compute without
exception if:
fastest dedicated addition formulas are used throughout, exttept
final addition, which needs to be unified (for our proof to go through)

APropositions 5,7: {nder fixed-base recoding) Weierstrass and twisted
Edwards fixed-base scalar multiplications will compute without
exception if:
complete additions are used throughotdr(our proof to go through)

Unified?
Complete?




Weierstrass completeness

Almpossibility Theorem BosmalLenstra):for general elliptic curves, we need
to compute at least two sets of explicit formulag¢o guarantee every sum is
computed:

i.,e.no Q "Q "Qsuch that

O QO

computes the correct sum (0 dod ) (W dod )+(w do ko ) for all

points on a general curve

ANeed "Q,"Q,"Q and "Qs'Qx8 Q= where at least one set will always do the
job...



Weierstrass completeness

Ae.g. specializedto® @ O ® @ and in homogeneous space, the sum

(0 dodo )+(w dodo ) will be at least one of (G dow o ) or (W a0 a0 R

Xz = (XqYo — XoY) (Y1242 +Y2Zy) — (XuZdo — XoZy)(a( X1 2o+ XoZy) +3bZ1 Zo — Y1Y2);

Y3 = —(3X1Xo +aZd172)(X1Yo — XoY1)+ (Y1Zo — YoZy)(a(X1Zo + XoZy) +3bZ1Zos — Y1Y2);

Z3 = (3X1 Xo+aZ1Z2)(XnZdoy — XoZy) — (Y1Zo +YoZi ) (Y122 — Yo Zy);

Xé — —(lejz + XQYl)(a.(X1Z2 + XQZl) +3bZ1 79 — Ylyzz) — (Y1Z2 + YzZl)(Sb(X1Z2 + XQZl) + a.(X1X2 — a.Z1Z2));
Y] = Y2YSF 4+ 3aX7X3 —20° X1 XoZ1 Zo — (a® +96*) 2125 + (X122 + XoZ1)(3b(3X1 Xo — aZ1 Z>) — a*(XoZy + X1 25)):
Zh = (3X1 Xo+aZ1Z2)(X1Ys + XoY1) + (Y122 + Yo Z1 ) (Y1Yo + 3bZ1 75 + a(X1Z2 + XoZ1)). (1)

AFor our o0 Weierstrass curves, our first attempt to optimize the above
gave 1 4 (compared to tor dedicated projective additions)

AAND the true cost ratio would be far worse than the multiplications indicate

... there’s got to be a better way...



Weierstrass “pseudo-completeness”

AWe give a “pseudo-complete’” addition algorithm for general Weierstrass curves
AExploits similarity in doubling and addition formulas (two main cases)

AResemblance to Chevallier-Mames, Ciet, and Joye: “Side-channel Atomicity”, but
they give separate routines — we merge into one with masking

Algorithm 18 Complete (mixed) addition using masking and Jacobian /affine coordinates on
rime-o i 5

23, if mask # 0 then 3 =t

4. t3=27Z1 xta 25. 6

5. t1 =12 X ta 26. t3 =t2/2

6. tg=y2 xt3 27 ta=ta+ 13

7. 1=t - X 28, if mask # 0 then t3 = 14 [+] O
Oll|pare 8 la=ta—-V 29, t4 =13

9. index =3 30, tg=1tq—1

10. if t; = 0 then

3 4=1la—1
[*] 31. Xa=t4—t
32. X3 =X

11 index =0 {R =0} 32. Xa=Xo—t2 2 . ~

12 if 14 = 0 then index =2 {R=2P} [+] 33. if mask = 0 then ty = X3 else 4 = X3 [+]

13. if P = O then index =1 {R=0Q} [#] 34. t1 =t1 — 14

14. mask 35, ty =13 xty

15. if inc then mask = | [*] 36. if mask = 0 then {; =I5 else t; =Y} [*] I
« else any other case} 37. if mask = 0 then 2 = 15 [*]

16. t3 = X + ¢t 38, t3 =11 X to

17. t X —t 39. Yo=1ty

18. if mask = 0 then t» = Y} else ty = 1; [*] 40. V3=V

9. t t 41. R x] (= (Xindex, Y Z [*]

AEdwards elegance unrivalled, but this gets the job done for Weierstrass!
Alac+aff (dedicated) = 8M+3S Jac+aff (complete-masking) =8M+3S+ ( ¢ 1t b
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TLS handshake with PFS: ECDH(E)-ECDSA

Three scenarios
AVariablebase: v ™ [QU (0 not known in advance)

- both sides of static DH
- half of ephemeral DH(E)
- constant time (recoding as before, final addition unified)

~ NI ~7

AFixedbase Qo m ['QU (U known in advance)
- other half of ephemeral DH(E)
- ECDSA signing
- constant time (fixed-base recoding, all additions complete)

N PN NI I

ADoublescalar oD m [0 [Q)O (0 known in advance, U not)

- ECDSA verification
- constant time unnecessary!



Security Prime Curve Variable | Fixed Double
Level -base |-base -scalar

Weierstrass

128 NG P ¥ Wiwisted Edwards 216 82 231
‘ Weierstrass 714 252 /58

192 n G O P X twisted Edwards 588 201 614
‘ Weierstrass 1,504 488 1,596

256 n G U @ Wiwisted Edwards 1,242 391 1,308

AFastest report NIST P-256 (Gueron & Krasnov ‘13): T TI Tey@es var-based

AFixed-base may get a fair bit faster in all scenarios, unified/complete adds
not necessary?? [Hamburg, a few days ago, private communication

ANo assembly above field layer (solid gains possible for our curves)
ACompare Curve25519 p Il TT 10 twisted Edwards ¢ plp Tt @andy)
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Conclusions and recommendations



Our work (in a nutshell)

Demonstrate potential of new curves inside the
Transport Layer Security (TLS) protocol

Constant-time, exception-free algorithms to do crypto

128-bit security 192-bit security 256-bit security

Weierstrass twisted
curves Edwards curves

Consider different families of primes for fast arithmetic



The sell: what did we do differently?

AModular/consistent implementation across three security levels
- twisted Edwards curves generated and implemented the same way
- same for Weierstrass

AAlso considered/implemented new/better primeorder curves
- concrete performance comparison
- true gauge on pros and cons of shifting to Edwards

ATwo different styles of primesf/field arithmetic
- Montgomery and Pseudo-Mersenne
- Stayed fixed on “full-length” Pseudo-Mersenne primes

AChoose Edwards everywhere over Montgomery ladder
- Consistency and no real performance hit
- More versatile



What could we do differently?

ADefine curves as Edwards, not twisted
- Douglas Stebila (8 Aug, 2014) on CFRG mailing list:
“Implementationgdshould] readilyexpose both a scalar point
multiplicationoperation and a point additionperatiorf’
- Perhaps better to define as Edwards equipped with complete add
(and optionally use Hamburg’s isogeny trick?)
- Fortunately foral T A, we get minimal ‘Qin either form (just rewrite)

ARemove®  with «  restriction
- Mike Hamburg (12 Aug, 2014) on CFRG mailing list:
“If these requirements become final, then surely the complete
curvesmod the Microsoft primes with a=1 and no restriction on
the sign of d (choose the one with g<p) should be infthen n 1 n
- Unrestricted curves in our first preprint, imposed Q T1tin v2, go back?




... see also ...

AReport:
http://eprint.iacr.org/2014/130.pdf

AMSR ECC Library:
http://research.microsoft.com/en-us/projects/nums/

ASpecification of curve selection:
http://research.microsoft.com/apps/pubs/default.aspx?id=219966

AIETF Internet Draft (authored by Benjamin Black)
http://tools.ietf.org/html/draft-black-numscurves-02



http://eprint.iacr.org/2014/130.pdf
http://research.microsoft.com/en-us/projects/nums/
http://research.microsoft.com/apps/pubs/default.aspx?id=219966
http://tools.ietf.org/html/draft-black-numscurves-02

