DISCRETE MATHEMATICS AND ITS APPLICATIONS

Series Editor KENNETH H. ROSEN

HANDBOOK OF

ELLIPTIC AND
HYPERELLIPTIC
CURVE CRYPTOGRAPHY

.\ .. |
A
- 4

HENRI COHEN Anp GERHARD FREY

ROBERTO AVANZI, CHRISTOPHE DOCHE, TANJA LANGE,
KIM NGUYEN, AND FREDERIK VERCAUTEREN

H Chapman & Hall/CRC

Taylor & Francis Group



HANDBOOK OF

ELLIPTIC AND
HYPERELLIPTIC
CURVE CRYPTOGRAPHY



SCRETE
MATHEMATICS
R

AND

[TS APPLICATIONS

Series Editor

Kenneth H. Rosen, Ph.D.

Juergen Bierbrauer, Introduction to Coding Theory

Kun-Mao Chao and Bang Ye Wu, Spanning Trees and Optimization Problems

Charalambos A. Charalambides, Enumerative Combinatorics

Henri Cohen, Gerhard Frey, et al., Handbook of Elliptic and Hyperelliptic Curve Cryptography
Charles J. Colbourn and Jeffrey H. Dinitz, The CRC Handbook of Combinatorial Designs

Steven Furino, Ying Miao, and Jianxing Yin, Frames and Resolvable Designs: Uses,
Constructions, and Existence

Randy Goldberg and Lance Riek, A Practical Handbook of Speech Coders

Jacob E. Goodman and Joseph O’Rourke, Handbook of Discrete and Computational Geometry,
Second Edition

Jonathan Gross and Jay Yellen, Graph Theory and Its Applications
Jonathan Gross and Jay Yellen, Handbook of Graph Theory

Darrel R. Hankerson, Greg A. Harris, and Peter D. Johnson, Introduction to Information
Theory and Data Compression, Second Edition

Daryl D. Harms, Miroslav Kraetzl, Charles J. Colbourn, and John S. Devitt, Network Reliability:
Experiments with a Symbolic Algebra Environment

Derek F. Holt with Bettina Eick and Eamonn A. O’Brien, Handbook of Computational Group Theory

David M. Jackson and Terry I. Visentin, An Atlas of Smaller Maps in Orientable and
Nonorientable Surfaces

Richard E. Klima, Ernest Stitzinger, and Neil P. Sigmon, Abstract Algebra Applications
with Maple

Patrick Knupp and Kambiz Salari, Verification of Computer Codes in Computational Science
and Engineering

William Kocay and Donald L. Kreher, Graphs, Algorithms, and Optimization

Donald L. Kreher and Douglas R. Stinson, Combinatorial Algorithms: Generation Enumeration
and Search

Charles C. Lindner and Christopher A. Roadgers, Design Theory

Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone, Handbook of Applied
Cryptography



Continued Titles

Richard A. Mollin, Algebraic Number Theory

Richard A. Mollin, Codes: The Guide to Secrecy from Ancient to Modern Times
Richard A. Mollin, Fundamental Number Theory with Applications

Richard A. Mollin, An Introduction to Cryptography

Richard A. Mollin, Quadratics

Richard A. Mollin, RSA and Public-Key Cryptography

Kenneth H. Rosen, Handbook of Discrete and Combinatorial Mathematics

Douglas R. Shier and K.T. Wallenius, Applied Mathematical Modeling: A Multidisciplinary
Approach

Jorn Steuding, Diophantine Analysis
Douglas R. Stinson, Cryptography: Theory and Practice, Second Edition

Roberto Togneri and Christopher J. deSilva, Fundamentals of Information Theory and
Coding Design

Lawrence C. Washington, Elliptic Curves: Number Theory and Cryptography






DISCRETE MATHEMATICS AND ITS APPLICATIONS
Series Editor KENNETH H. ROSEN

HANDBOOK OF

ELLIPTIC AND
HYPERELLIPTIC
CURVE CRYPTOGRAPHY

HENRI COHEN
GERHARD FREY

ROBERTO AVANZI, CHRISTOPHE DOCHE, TANJA LANGE,
KIM NGUYEN, AND FREDERIK VERCAUTEREN

ﬂ Chapman & Hall/CRC

Taylor &Fra
Boca Raton London NkaSgp



Published in 2006 by

Chapman & Hall/CRC

Taylor & Francis Group

6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2006 by Taylor & Francis Group, LLC
Chapman & Hall/CRC is an imprint of Taylor & Francis Group

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10987654321

International Standard Book Number-10: 1-58488-518-1 (Hardcover)
International Standard Book Number-13: 978-1-58488-518-4 (Hardcover)
Library of Congress Card Number 2005041841

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with
permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish
reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials
or for the consequences of their use.

No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or
other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com
(http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive, Danvers, MA
01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Handbook of elliptic and hyperelliptic curve cryptography / Scientific editors, Henri Cohen & Gerard

Frey ; authors, Roberto M Avanzi ... [et. al.].

p. cm. — (Discrete mathematics and its applications)

Includes bibliographical references and index.

ISBN 1-58488-518-1 (alk. paper)

1.Curves, Elliptic — Handbooks, manuals, etc. 2. Cryptography — mathematics -- handbooks, manuals,
etc. 3. Machine theory — Handbooks, manuals etc. I. Cohen, Henri. II. Frey, Gerhard, 1994- III. Avanzi,
Roberto M. V. Series.

QA567.2.E44H36 2005
51652 — dc22 2005041841

T& F . f Visit the Taylor & Francis Web site at
ln Or ma http://www.taylor andfrancis.com
Taylor & Francis Group and the CRC Press Web site at
is the Academic Division of T&F Informa plc. http://WWW.CI’ cpress.com




Dr. Henri Cohen is Professor of Mathematics at the University of Bordeaux,
France. His research interests are number theory in general, and computa-
tional number theory in particular.

Dr. Gerhard Frey holds a chair for number theory at the Institute for Exper-
imental Mathematics at the University of Duisburg-Essen, Germany. His
research interests are number theory and arithmetical geometry as well as
applications to coding theory and cryptography.

Dr. Christophe Doche is lecturer at Macquarie University, Sydney, Australia.
His research is focused on analytic and algorithmic number theory as well
as cryptography.

Dr. Roberto M. Avanzi is currently Junior Professor at the Ruhr-University,
Bochum. His research interests include arithmetic and algorithmic aspects
of curve-based cryptography, integer recodings and addition chains, side-
channel analysis, and diophantine analysis.

Dr. Tanja Lange is Associate Professor of Mathematics at the Technical
University of Denmark in Copenhagen. Her research covers mathematical
aspects of public-key cryptography and computational number theory with
focus on curve cryptography.

Dr. Kim Nguyen received a Ph.D. in number theory and cryptography in 2001
at the University of Essen. His first position outside academia was with the
Cryptology Competence Center of Philips Semiconductors Hamburg. He
currently works for the Bundesdruckerei GmbH in Berlin, Germany.

Dr. Frederik Vercauteren is a Post-Doc at the Katholieke Universiteit Leuven,
Belgium. His research interests are computational algebraic geometry and
number theory, with applications to cryptography.



Scientific Editors: Henri Cohen and Gerhard Frey
Executive Editor: Christophe Doche

Authors: Roberto M. Avanzi, Henri Cohen, Christophe Doche,
Gerhard Frey, Tanja Lange, Kim Nguyen, and Frederik Vercauteren

Contributors: Bertrand Byramjee, Jean-Christophe Courrege,
Sylvain Duquesne, Benoit Feix, Reynald Lercier, David Lubicz,
Nicolas Thériault, and Andrew Weig!



Roberto M. Avanzi

Faculty of Mathematics and

Horst Gértz Institute for IT-Security

Ruhr University Bochum, Germany
Roberto.Avanzi@ruhr-uni-bochum.de

Henri Cohen

Université Bordeaux |

Laboratoire A2X, France
Henri.Cohen@math.u-bordeauxl.fr

Christophe Doche

Macquarie University

Department of Computing, Australia
doche@ics.mqg.edu.au

Benoit Feix
CEACI, Toulouse, France
Benoit.Feix@cnes.fr

Tanja Lange

Technical University of Denmark
Department of Mathematics
t.lange@mat.dtu.dk

David Lubicz

Centre d’ELectronique de "’ARmement
France
david.lubicz@math.univ-rennesl.fr

Nicolas Thériault

University of Waterloo,
Department of Combinatorics
and Optimization, Canada
ntheriau@uwaterloo.ca

Andrew Weigl
University of Bremen
ITEM, Germany
a.s.weigl@ieee.org

Bertrand Byramjee
bbyramjee@libertysurf.fr

Jean-Christophe Courrége
CEACI, Toulouse, France

Jean-Christophe.Courrege@cnes.fr

Sylvain Duquesne

Université Montpellier Il

Laboratoire 13M, France
duquesne@math.univ-montp2.fr

Gerhard Frey

University of Duisburg-Essen
IEM, Germany
frey@iem.uni-due.de

Reynald Lercier

Centre d’ELectronique de "ARmement
France

Reynald.Lercier@m4x.org

Kim Nguyen
nguyen.kim@web.de

Frederik Vercauteren
Katholieke Universiteit Leuven
COSIC - Electrical Engineering
Belgium
fvercaut@esat.kuleuven.be






Table of Contents

List of Algorithms

Preface

1

Introduction to Public-Key Cryptography

1.1
1.2
1.3
1.4

1.5

1.6

1.7

Cryptography

Complexity

Public-key cryptography

Factorization and primality

1.4.1  Primality .

1.4.2 Complexity of factorlng

1.4.3 RSA

Discrete logarithm systems

1.5.1  Generic discrete logarithm systems

1.5.2 Discrete logarithm systems with bilinear structure
Protocols .

1.6.1 Diffie—Hellman key exohange

1.6.2 Asymmetric Diffie—Hellman and EIGamaI encryptron
1.6.3 Signature scheme of ElGamal-type

1.6.4 Tripartite key exchange

Other problems

I Mathematical Background

Algebraic Background .

2.1

2.2

2.3

Elementary algebraic structures .
2.1.1  Groups

2.1.2 Rings

2.1.3 Fields .

2.1.4 \Vector spaces .

Introduction to number theory .
2.2.1 Extension of fields .

2.2.2 Algebraic closure.

2.2.3 Galois theory .

2.2.4 Number fields

Finite fields . .

2.3.1 First properties

2.3.2 Algebraic extensions of a f|n|te f|eld .
2.3.8 Finite field representations .
2.3.4 Finite field characters

X1

xXxiii

XXix

© 0000 ~NO”OO NN =

19
19
19
21
23
24
24
25
27
27
29
31
31
32
33
35



Xii

Table of Contents

3 Background on p-adic Numbers 39
3.1 Definition of Q, and first properties . 39
3.2 Complete discrete valuation rings and fields 41

3.2.1 First properties 41
3.2.2 Lifting a solution of a polynomlal equatlon 42
3.3 The field Q, and its extensions 43
3.3.1 Unramified extensions 43
3.3.2 Totally ramified extensions . 43
3.3.3 Multiplicative system of representatwes . 44
3.3.4 Witt vectors . 44
4 Background on Curves and Jacobians 45
4.1 Algebraic varieties . . 45
4.1.1 Affine and projective varletles 46
4.2 Function fields 51
4.2.1 Morphisms of affine var|et|es 52
4.2.2 Rational maps of affine varieties 53
4.2.3 Regular functions. 54
4.2.4 Generalization to projective varletles 55
4.3 Abelian varieties 55
4.3.1 Algebraic groups 55
4.3.2 Birational group laws . 56
4.3.3 Homomorphisms of abelian varletles 57
4.3.4 Isomorphisms and isogenies : 58
4.3.5 Points of finite order and Tate modules 60
4.3.6 Background on /-adic representations. 61
4.3.7 Complex multiplication 63
4.4  Arithmetic of curves. 64
4.41 Local rings and smoothness 64
4.4.2 Genus and Riemann—Roch theorem 66
4.4.3 Divisor class group . . 76
4.4.4 The Jacobian variety of curves . 77
4.45 Jacobian variety of elliptic curves and group law 79
4.4.6 Ideal class group . 81
4.47 Class groups of hypereII|pt|c curves. 83

5 Varieties over Special Fields 87

5.1 Varieties over the field of complex numbers 87
5.1.1 Analytic varieties 87
5.1.2 Curves over C . . 89
5.1.3 Complex tori and abelian varletles . 92
5.1.4 Isogenies of abelian varieties over C 94
5.1.5 Elliptic curves over C . 95
5.1.6 Hyperelliptic curves over C . 100

5.2 Varieties over finite fields . 108
5.2.1  The Frobenius morphism . : 109
5.2.2 The characteristic polynomial of the Frobenlus endomorph|sm . . 109
5.2.3 The theorem of Hasse—Weil for Jacobians . 110
5.2.4 Tate’s isogeny theorem . 112



Table of Contents Xiii
6 Background on Pairings . 115
6.1 General duality results 115
6.2 The Tate pairing . . 116
6.3 Pairings over local fields . 117
6.3.1 The local Tate pairing . 118

6.3.2 The Lichtenbaum pairing on Jacoblan varletles 119

6.4 An explicit pairing . . 122
6.4.1 The Tate—Lichtenbaum pairing 122

6.4.2 Size of the embedding degree. . 123

7 Background on Weil Descent . 125
7.1 Affine Weil descent . 125
7.2 The projective Weil descent. . 127
7.3 Descent by Galois theory . 128
7.4 Zariski closed subsets inside of the Weil descent . 129
7.4.1 Hyperplane sections 129

7.4.2 Trace zero varieties . . 130

7.4.3 Covers of curves . 131

7.4.4 The GHS approach . . 131

8 Cohomological Background on Point Counting . 133
8.1 General principle 133
8.1.1 Zeta function and the We|I conjectures . 134

8.1.2 Cohomology and Lefschetz fixed point formula 135

8.2 Overview of ¢-adic methods. . 137
8.3 Overview of p-adic methods 138
8.3.1 Serre—Tate canonical lift . . 138

8.3.2 Monsky—Washnitzer cohomology. 139

Il Elementary Arithmetic

9 Exponentiation 145
9.1 Generic methods. . 146
9.1.1 Binary methods 146

9.1.2 Left-to-right 2*-ary algonthm . 148

9.1.3 Sliding window method 149

9.1.4 Signed-digit recoding . 150

9.1.5 Multi-exponentiation 154

9.2 Fixed exponent . 157
9.2.1 Introduction to add|t|on chalns 157

9.2.2 Short addition chains search . 160

9.2.3 Exponentiation using addition chains . 163

9.3 Fixed base point . . 164
9.3.1  Yao’s method 165

9.3.2 Euclidean method . 166

9.3.3 Fixed-base comb method 166



Xiv Table of Contents

10 Integer Arithmetic . . . . . . . . . . . . . 169
10.1 Multiprecision integers. . . . . . . . . . . . 170
10.1.1 Introduction . : . : : . . . : . . 170
10.1.2 Internal representatlon : : . : . . . : : 171
10.1.3 Elementary operations. . : : . . : : . : 172

10.2 Addition and subtraction . . . . . . . . . . . 172
10.3 Multiplication . . . : . . . : : . . 174
10.3.1 Schoolbook multlpllcahon . . . . . . . . . 174
10.3.2 Karatsuba multiplication . : : . . . : . : 176
10.3.3 Squaring . . . : : . : : . . : . . 177
10.4 Modular reduction . . . . . . . . . . . . 178
10.4.1 Barrett method. . : : . : . . . : . . 178
10.4.2 Montgomery reduction. . . . . . . . . . 180
10.4.3 Special moduli. . . . . . . . . . . 182
10.4.4 Reduction modulo several pnmes . . . . . . . 184

10.5 Division . . . . . . . . . . . 184
10.5.1 Schoolbook dIVISIOﬂ . . . . . . . . . . 185
10.5.2 Recursive division . . . . . . . . . . . 187
10.5.3 Exact division . . . . . . . . . . . 189
10.6 Greatest common divisor . . . . . . . . . . . 190
10.6.1 Euclid extended gcd . . . . . . . . . . 191
10.6.2 Lehmer extended gcd . . . . . . . . . . 192
10.6.3 Binary extended gcd . . . . . . . . . . 194
10.6.4 Chinese remainder theorem . . . . . . . . . 196

10.7 Square root . . . . . . . . . . . . 197
10.7.1 Integer square root . : . : . . . . . . 197
10.7.2 Perfect square detection . . . . . . . . . 198

11 Finite Field Arithmetic . . . . : . . : . . . 201
11.1 Prime fields of odd characterlstlc . . . . . . . . . 201
11.1.1 Representations and reductions . : . . : : . . 202
11.1.2 Multiplication . . : : . : . . . : : . 202
11.1.3 Inversion and division . . : : . . : : . : 205
11.1.4 Exponentiation. . . . . . . . . . . 209
11.1.5 Squares and square roots . . . . . . . . . 210

11.2 Finite fields of characteristic 2 . . . . . . . . . . 213
11.2.1 Representation . . . . . . . . . . . 213
11.2.2 Multiplication . . . . . . . . . . . . 218
11.2.3 Squaring . . . . . . . . . . . . 221
11.2.4 Inversion and division . . . . . . . . . . 222
11.2.5 Exponentiation . . . . . . . . 225
11.2.6 Square roots and quadratic equatlons . . . . . . . 228

11.3 Optimal extension fields . . . . . . . . . . . 229
11.3.1 Introduction . . . . . . . . . . . . 229
11.3.2 Multiplication . . . . . . . . . . . 231
11.3.3 Exponentiation. . . . . . . . . . . . 231
11.3.4 Inversion . . . . . . . . . . . 233
11.3.5 Squares and square roots . . . . . . . . 234

11.3.6 Specific improvements for degrees 3 and 5. . : : . . 235



Table of Contents Xxv
12 Arithmetic of p-adic Numbers 239
12.1 Representation . 239
12.1.1 Introduction . 239
12.1.2 Computing the TelchmuIIermodqus . 240

12.2 Modular arithmetic . 244
12.2.1 Modular multlpllcatlon . 244
12.2.2 Fast division with remainder. 244

12.3 Newton lifting . 246
12.3.1 Inverse 247
12.3.2 Inverse square root . 248
12.3.3 Square root . 249
12.4 Hensel lifting . . 249
12.5 Frobenius substitution 250
12.5.1 Sparse modulus . 251
12.5.2 Teichmdiller modulus 252
12.5.83 Gaussian normal basis . 252
12.6 Artin—Schreier equations. 252
12.6.1 Lercier—Lubicz algorithm . . 253
12.6.2 Harley’s algorithm 254

12.7 Generalized Newton lifting . . 256
12.8 Applications 257
12.8.1 Teichmdller lift . . 257
12.8.2 Logarithm 258
12.8.3 Exponential . 259
12.8.4 Trace . 260
12.8.5 Norm . 261

Il Arithmetic of Curves

13 Arithmetic of Elliptic Curves . . 267
13.1 Summary of background on elliptic curves 268
13.1.1 First properties and group law . . 268
13.1.2 Scalar multiplication 271
13.1.83 Rational points. . 272
13.1.4 Torsion points 273
13.1.5 Isomorphisms . . 273
13.1.6 Isogenies 277
13.1.7 Endomorphisms . 277
13.1.8 Cardinality . 278

13.2 Arithmetic of elliptic curves deflned over ]F . 280
13.2.1 Choice of the coordinates 280
13.2.2 Mixed coordinates . 283
13.2.3 Montgomery scalar multlpllcatlon 285
13.2.4 Parallel implementations . . 288
13.2.5 Compression of points. 288

13.3 Arithmetic of elliptic curves defined over ]F‘Qd . 289
13.3.1 Choice of the coordinates . 291
13.3.2 Faster doublings in affine coordinates . 295



XVi Table of Contents

13.3.3 Mixed coordinates . . . . . . . . . 296
13.3.4 Montgomery scalar multlpllcatlon . : : . . : : . 298
13.3.5 Point halving and applications . : . . : : . : 299
13.3.6 Parallel implementation . . . . . . . . . . 302
13.3.7 Compression of points. . . . . . . . . . 302

14 Arithmetic of Hyperelliptic Curves . . . . . . . 303
14.1 Summary of background on hyperell|pt|c curves . . . . . . . 304
14.1.1 Group law for hyperelliptic curves . . . . . . : 304
14.1.2 Divisor class group and ideal class group : . . : : . 306
14.1.3 Isomorphisms and isogenies . . . . . . . . 308
14.1.4 Torsion elements . : : . : : . . . : . 309
14.1.5 Endomorphisms . . . . . . . . . . . 310
14.1.6 Cardinality . . . . . . . . . . . . 310

14.2 Compression techniques. . . . . . . . . 311
14.2.1 Compression in odd charactens’uc . . . . . . . . 311
14.2.2 Compression in even characteristic . . : : . : 313

14.3 Arithmetic on genus 2 curves over arbitrary characterlstlc . . . . . 313
14.3.1 Different cases . . . . . . . 314
14.3.2 Addition and doubling in afflne coordlnates . . . . . . 316

14.4 Arithmetic on genus 2 curves in odd characteristic . . . . . : 320
14.4.1 Projective coordinates . : : : . . : : . 321
14.4.2 New coordinates in odd characterlstlc . . : . . 323
14.4.3 Different sets of coordinates in odd characterlstlc . . . . 325
14.4.4 Montgomery arithmetic for genus 2 curves in odd characterlstlc . . 328

14.5 Arithmetic on genus 2 curves in even characteristic . . . . . . 334
14.5.1 Classification of genus 2 curves in even characteristic . . . . 334
14.5.2 Explicit formulas in even characteristic in affine coordinates . . . 336
14.5.3 Inversion-free systems for even characteristic when ho 7é 0. . . 341
14.5.4 Projective coordinates . . . . . 341
14.5.5 Inversion-free systems for even characterlstlc when ho = O . . 345

14.6 Arithmetic on genus 3 curves . : . : : . . . . . 348
14.6.1 Addition in most common case . . . . . . . . 348
14.6.2 Doubling in most common case . . . . . 349
14.6.3 Doubling on genus 3 curves for even characterlstlc when h(z)=1 . 351

14.7 Other curves and comparison . : . : . . . : : . 352
15 Arithmetic of Special Curves . . . . . . . . . . . 355
15.1 Koblitz curves . . : . . . : : . : 355
15.1.1 Elliptic binary Koblltz curves . . . . . . . . . 356
15.1.2 Generalized Koblitz curves . . . . . . . . . 367
15.1.3 Alternative setup . . . . . . . . . 375

15.2 Scalar multiplication using endomorphlsms . . . . . . . 376
15.2.1 GLV method . . . . . . . . . . . . 377
15.2.2 Generalizations . . . . . . 380
15.2.3 Combination of GLV and Koblltz curve strategles . . . . . 381
15.2.4 Curves with endomorphisms for identity-based parameters . . . 382

15.3 Trace zero varieties . . . . . . . . . 383
15.3.1 Background on trace zero vanetles . . . . . . . 384

15.3.2 Arithmetic in G. . . . . . . . . . . . 385



Table of Contents XVii
16 Implementation of Pairings . 389
16.1 The basic algorithm. 389
16.1.1 The setting . 390
16.1.2 Preparation . 391
16.1.3 The pairing computatlon algonthm . . 391
16.1.4 The case of nontrivial embedding degree k . 393
16.1.5 Comparison with the Weil pairing . 395

16.2 Elliptic curves . 396
16.2.1 The basic step. . 396
16.2.2 The representation 396
16.2.3 The pairing algorithm . 397
16.2.4 Example 397

16.3 Hyperelliptic curves of genus 2 . 398
16.3.1 The basic step 399
16.3.2 Representation for k > 2. . 399

16.4 Improving the pairing algorithm 400
16.4.1 Elimination of divisions . 400
16.4.2 Choice of the representation 400
16.4.3 Precomputations . 400

16.5 Specific improvements for elliptic curves . 400
16.5.1 Systems of coordinates . 401
16.5.2 Subfield computations . 401
16.5.3 Even embedding degree . . 402
16.5.4 Example 403

IV Point Counting

17 Point Counting on Elliptic and Hyperelliptic Curves 407
17.1 Elementary methods . 407
17.1.1 Enumeration 407
17.1.2 Subfield curves . 409
17.1.3 Square root algorithms 410
17.1.4 Cartier—Manin operator . 411

17.2 Overview of /-adic methods 413
17.2.1 Schoof’s algorithm . . 413
17.2.2 Schoof-Elkies—Atkin’s algorlthm . 414
17.2.3 Modular polynomials . 416
17.2.4 Computing separable isogenies in flnlte flelds of Iarge characterlstlc 419
17.2.5 Complete SEA algorithm . . 421

17.3 Overview of p-adic methods 422
17.3.1 Satoh’s algorithm . 423
17.3.2 Arithmetic-Geometric-Mean algorlthm 434
17.3.3 Kedlaya’s algorithm . . 449



Xviii Table of Contents
18 Complex Multiplication . 455
18.1 CM for elliptic curves 456
18.1.1 Summary of background . 456
18.1.2 Outline of the algorithm : 456
18.1.3 Computation of class polynomials . 457
18.1.4 Computation of norms. 458
18.1.5 The algorithm . . 459
18.1.6 Experimental results 459

18.2 CM for curves of genus 2 . . 460
18.2.1 Summary of background 462
18.2.2 Ouitline of the algorithm . 462
18.2.3 CM-types and period matrices 463
18.2.4 Computation of the class polynomials . 465
18.2.5 Finding a curve 467
18.2.6 The algorithm . . 469

18.3 CM for larger genera 470
18.3.1 Strategy and drffrcultres in the general case . 470
18.3.2 Hyperelliptic curves with automorphisms 471
18.3.3 The case of genus 3 . 472

V Computation of Discrete Logarithms

19 Generic Algorithms for Computing Discrete Logarithms . 477
19.1 Introduction 478
19.2 Brute force . . 479
19.3 Chinese remarnderlng 479
19.4 Baby-step giant-step . 480
19.4.1 Adaptive giant-step wrdth 481
19.4.2 Search in intervals and parallelrzatron . 482
19.4.3 Congruence classes 483

19.5 Pollard’s rho method . 483
19.5.1 Cycle detection 484
19.5.2 Application to DL . 488
19.5.3 More on random walks. 489
19.5.4 Parallelization . . 489
19.5.5 Automorphisms of the group 490

19.6 Pollard’s kangaroo method . . 491
19.6.1 The lambda method 492
19.6.2 Parallelization . . 493
19.6.3 Automorphisms of the group 494

20 Index Calculus 495
20.1 Introduction . . 495
20.2 Arithmetical formatrons 496
20.2.1 Examples of formations . . 497

20.3 The algorithm . 498
20.3.1 On the relation search . 499

20.3.2 Parallelization of the relation search

500



Table of Contents Xix
20.3.3 On the linear algebra . 500
20.3.4 Filtering 503
20.3.5 Automorphisms of the group . 505
20.4 An important example: finite fields . 506
20.5 Large primes . 507
20.5.1 One large prlme : 507
20.5.2 Two large primes . 508
20.5.3 More large primes 509

21 Index Calculus for Hyperelliptic Curves 511

21.1 General algorithm . 511
21.1.1 Hyperelliptic |nvolut|on 512
21.1.2 Adleman-DeMarrais—Huang . 512
21.1.3 Enge—-Gaudry 516

21.2 Curves of small genus. . 516
21.2.1 Gaudry’s algorithm 517
21.2.2 Refined factor base . . 517
21.2.3 Harvesting . 518

21.3 Large prime methods . . 519
21.3.1 Single large prime 520
21.3.2 Double large primes. . 521

22 Transfer of Discrete Logarithms . 529
22.1 Transfer of discrete logarithms to F,-vector spaces 529
22.2 Transfer of discrete logarithms by pairings . . 530
22.3 Transfer of discrete logarithms by Weil descent 530
22.3.1 Summary of background . . 531
22.3.2 The GHS algorithm 531
22.3.3 Odd characteristic . 536
22.3.4 Transfer via covers . 538
22.3.5 Index calculus method via hyperplane sectlons . 541

VI Applications

23 Algebraic Realizations of DL Systems . 547
23.1 Candidates for secure DL systems . 547
23.1.1 Groups with numeration and the DLP . 548
23.1.2 Ideal class groups and divisor class groups . 548
23.1.3 Examples: elliptic and hyperelliptic curves . 551
23.1.4 Conclusion . . 553
23.2 Security of systems based on PICC . 554
23.2.1 Security under index calculus attacks . 554
23.2.2 Transfers by Galois theory . 555

23.3 Efficient systems . 557
23.3.1 Choice of the finite fleld . . 558
23.3.2 Choice of genus and curve equation 560
23.3.3 Special choices of curves and scalar multlpllcatlon . . 563

23.4 Construction of systems . 564



XX Table of Contents
23.4.1 Heuristics of class group orders . 564
23.4.2 Finding groups of suitable size 565

23.5 Protocols . 569
23.5.1 System parameters 569
23.5.2 Protocols on Pic% . 570

23.6 Summary 571

24 Pairing-Based Cryptography 573

24.1 Protocols : . 573
24.1.1 Multiparty key exchange 574
24.1.2 ldentity-based cryptography . 576
24.1.3 Short signatures . 578

24.2 Realization . . 579
24.2.1 Supersingular eIIrptrc curves 580
24.2.2 Supersingular hyperelliptic curves . . 584
24.2.3 Ordinary curves with small embedding degree 586
24.2.4 Performance . 589
24.2.5 Hash functions on the Jacoblan . 590

25 Compositeness and Primality Testing — Factoring 591

25.1 Compositeness tests . . 592
25.1.1 Trial division. 592
25.1.2 Fermat tests . 593
25.1.3 Rabin—Miller test . 594
25.1.4 Lucas pseudoprime tests. . 595
25.1.5 BPSW tests. 596

25.2 Primality tests . 596
25.2.1 Introduction . 596
25.2.2 Atkin—Morain ECPP test . 597
25.2.3 APRCL Jacobi sum test . 599
25.2.4 Theoretical considerations and the AKS test . 600

25.3 Factoring. 601
25.3.1 Pollard’s rho method . 601
25.3.2 Pollard’s p — 1 method. 603
25.3.3 Factoring with elliptic curves . . 604
25.3.4 Fermat—Morrison—Brillhart approach 607

VIl Realization of Discrete Logarithm Systems

26 Fast Arithmetic in Hardware . 617

26.1 Design of cryptographic coprocessors . 618
26.1.1 Design criterions . 618

26.2 Complement representations of srgned numbers . 620

26.3 The operation XY + Z 622
26.3.1 Multiplication using left shrfts . 623
26.3.2 Multiplication using right shifts 624

26.4 Reducing the number of partial products . 625
26.4.1 Booth or signed digit encoding 625



Table of Contents XXi
26.4.2 Advanced recoding techniques . 626

26.5 Accumulation of partial products 627
26.5.1 Full adders . 627
26.5.2 Faster carry propagatlon 628
26.5.3 Analysis of carry propagation . . 631
26.5.4 Multi-operand operations 633

26.6 Modular reduction in hardware . 638
26.7 Finite fields of characteristic 2 . 641
26.7.1 Polynomial basis . 642
26.7.2 Normal basis 643

26.8 Unified multipliers . 644
26.9 Modular inversion in hardware 645
27 Smart Cards . 647
27.1 History. . . . 647
27.2 Smart card properties 648
27.2.1 Physical properties . . 648
27.2.2 Electrical properties 650
27.2.3 Memory . . 651
27.2.4 Environment and software . 656

27.3 Smart card interfaces . . 659
27.3.1 Transmission protocols 659
27.3.2 Physical interfaces . . 663
27.4 Types of smart cards 664
27.4.1 Memory only cards (synchronous cards) . 664
27.4.2 Microprocessor cards (asynchronous cards) 665

28 Practical Attacks on Smart Cards 669
28.1 Introduction . . 669
28.2 Invasive attacks 670
28.2.1 Gaining access to the chlp . 670
28.2.2 Reconstitution of the layers . 670
28.2.3 Reading the memories . 671
28.2.4 Probing . 671
28.2.5 FIB and test engineers scheme flaws . 672

28.3 Non-invasive attacks 673
28.3.1 Timing attacks . . . 673
28.3.2 Power consumption analysis 675
28.3.3 Electromagnetic radiation attacks . 682
28.3.4 Differential fault analysis (DFA) and fault |nJect|on attacks 683

29 Mathematical Countermeasures against Side-Channel Attacks 687
29.1 Countermeasures against simple SCA . 688
29.1.1 Dummy arithmetic instructions 689
29.1.2 Unified addition formulas . . 694
29.1.3 Montgomery arithmetic 696

29.2 Countermeasures against differential SCA . 697
29.2.1 Implementation of DSCA 698
29.2.2 Scalar randomization . 699
29.2.3 Randomization of group eIements 700



XXii Table of Contents

29.2.4 Randomization of the curve equation : : . . : : . 700

29.3 Countermeasures against Goubin type attacks . . . . . . 703
29.4 Countermeasures against higher order differential SCA . . . . . 704
29.5 Countermeasures against timing attacks . . . . : : . . 705
29.6 Countermeasures against fault attacks . . . . . . 705
29.6.1 Countermeasures against simple fault analysrs . . : . . 706
29.6.2 Countermeasures against differential fault analysis . . : : . 706
29.6.3 Conclusion on fault induction . . . . . . . . 708

29.7 Countermeasures for special curves . . . . . . . 709
29.7.1 Countermeasures against SSCA on Koblltz curves . . . . 709
29.7.2 Countermeasures against DSCA on Koblitz curves . . . . . 711
29.7.3 Countermeasures for GLV curves . . . . . . . 713

30 Random Numbers — Generation and Testing . . . . . . . 715
30.1 Definition of a random sequence . . . . . . . . . . 715
30.2 Random number generators . . . . . . . . . . 717
30.2.1 History . . . . . . . . 717
30.2.2 Properties of random number generators . . . . . : 718
30.2.3 Types of random number generators : : . . : : . 718
30.2.4 Popular random number generators . . . : : . : 720

30.3 Testing of random number generators . . . . . . . . . 722
30.4 Testing a device . . . . . . . . . . . 722
30.5 Statistical (empirical) tests . . . . . . . . . 723
30.6 Some examples of statistical models on E” : . . . . . . 725
30.7 Hypothesis testings and random sequences . . . . . . . 726
30.8 Empirical test examples for binary sequences . . . . . . . 727
30.8.1 Random walk . . . . . . . . . . . . 727
30.8.2 Runs . . . . . . . . . . . . . 728
30.8.3 Autocorrelation . . . . . . . . . . 728

30.9 Pseudorandom number generators . . . . . . . . 729
30.9.1 Relevant measures . . . . . . . 730
30.9.2 Pseudorandom number generators from curves . . . . . 732
30.9.3 Other applications . . . . . . . . . . . 735
References . . . . . . . . . . . . . . . 737
Notation Index . . . . . . . . . . . . . . 777

General Index . . . . . . . . . . . . . . . 785



1.15
1.16
1.17
1.18
1.20
1.21

9.1

9.2

9.5

9.7

9.10
9.14
9.17
9.20
9.23
9.27
9.41
9.43
9.44
9.47
9.49

10.3

10.5

10.8

10.11
10.14
10.17
10.18
10.22
10.25
10.28
10.30
10.35
10.39
10.42
10.45
10.46
10.49
10.52

List of Algorithms

Key generation.

Asymmetric Diffie— HeIIman encryptlon
ElGamal encryption .

ElGamal signature

Signature verification

Three party key exchange

Square and multiply method.

Right-to-left binary exponentiation
Montgomery’s ladder

Left-to-right 2%-ary exponentlat|on

Sliding window exponentiation

NAF representation .

Koyama-Tsuruoka signed- blnary recodlng
NAF,, representation

Multi-exponentiation using Straus tnck
Joint sparse form recoding

Exponentiation using addition chain
Multi-exponentiation using vectorial addition chaln .
Improved Yao’s exponentiation

Euclidean exponentiation.

Fixed-base comb exponentiation .

Addition of nonnegative multiprecision integers

Subtraction of nonnegative multiprecision integers .
Multiplication of positive multiprecision integers .
Karatsuba multiplication of positive multiprecision integers
Squaring of a positive multiprecision integer.

Division-free modulo of positive multiprecision integers
Reciprocation of positive multiprecision integers .
Montgomery reduction REDC of multiprecision integers

Fast reduction for special form moduli .

Short division of positive multiprecision integers
Schoolbook division of positive multiprecision integers.
Recursive division of positive multiprecision integers

Exact division of positive multiprecision integers in base b = 25
Euclid extended gcd of positive integers . .
Lehmer extended gcd of multiprecision positive mtegers
Partial gcd of positive multiprecision integers in base b = 2°
Extended binary gcd of positive integers

Chinese remainder computation

XXl

11
11
11
12
13
14

. 146

146

. 148

148

. 150

151

. 152

153

. 155

156

. 164

164

. 165

166

. 167

. 173

173

. 174

176

177

179

. 179

181

. 183

185

. 185

188

. 189

191

. 192

193

. 195

196



XXiv List of Algorithms
10.55 Integer square root . 198
11.1 Interleaved multiplication-reduction of multiprecision integers . 203
11.3 Multiplication in Montgomery representation 204
11.6 Plus-minus inversion method . 206
11.9 Prime field inversion. 207
11.12 Montgomery inverse in Montgomery representatlon . 208
11.15 Simultaneous inversion modulo p 209
11.17  Binary exponentiation using Montgomery representatlon . 210
11.19 Legendre symbol 210
11.23 Tonelli and Shanks square root computatlon . 212
11.26  Square root computation . 213
11.31 Division by a sparse polynomial . . 214
11.34  Multiplication of polynomials in Fo[X] . . . . 218
11.37  Multiplication of polynomials in F3[X ] using window technique . 219
11.41  Euclid extended polynomial gcd . 222
11.44  Inverse of an element of [F7, in polynomial representatlon . 223
11.47 Inverse of an element of F;d using Lagrange’s theorem 224
11.50 Modular composition of Brent and Kung . 226
11.53  Shoup exponentiation algorithm 227
11.66 OEF inversion . . 234
11.69 Legendre— Kronecker—Jacobl symbol 235
12.2 Teichmaller modulus : 242
12.3 Teichmaller modulus increment . 242
12.5 Polynomial inversion 245
12.6 Fast division with remainder. . 245
12.9 Newton iteration 246
12.10 Inverse. . 247
12.12 Inverse square root (p = 2) 248
12.15 Hensel lift iteration . 249
12.16 Hensel lift. 250
12.18 Artin—Schreier root square muItlpIy . 253
12.19  Artin—Schreier root I. 254
12.21  Artin—Schreier root Il . 255
12.23 Generalized Newton lift 257
12.24  Teichmdller lift . 258
12.33 Norm | 261
12.35 Norm Il . 262
13.6 Sliding window scalar multiplication on elliptic curves . . 271
13.35 Scalar multiplication using Montgomery’s ladder 287
13.42 Repeated doublings . 295
13.45 Point halving 300
13.48 Halve and add scalar multlpllcatlon . 301
14.7 Cantor’s algorithm . 308
14.19 Addition (g = 2 and degu; = deg Uy = 2) 317
14.20 Addition (g = 2, deguy = 1, and deg us = 2) . 318
14.21  Doubling (¢ = 2 and degu = 2) 319



List of Algorithms XXV
14.22  Addition in projective coordinates (g = 2 and ¢ odd) . 321
14.23 Doubling in projective coordinates (g = 2 and g odd) 322
14.25 Addition in new coordinates (¢ = 2 and ¢ odd) . 324
14.26  Doubling in new coordinates (g = 2 and g odd) 325
14.30 Montgomery scalar multiplication for genus 2 curves . 331
14.41 Doubling on Type la curves (g = 2 and q even) 337
14.42 Doubling on Type Ib curves (g = 2 and ¢ even) . 338
14.43 Doubling on Type Il curves (g = 2 and g even). 339
14.44 Doubling on Type lll curves (¢ = 2 and q even) . . 340
14.45 Doubling in projective coordinates (g = 2, hy # 0, and ¢ even). 341
14.47  Addition in new coordinates (g = 2, ho # 0, and g even) . 342
14.48 Doubling in new coordinates (g = 2, ho # 0, and ¢ even). 343
14.49 Doubling in projective coordinates (g = 2, ho = 0, and ¢ even) . 346
14.50 Addition in recent coordinates (g = 2, ho = 0, and g even) 346
14.51 Doubling in recent coordinates (g = 2, he = 0, and g even) . . 347
14.52  Addition on curves of genus 3 in the general case 348
14.53 Doubling on curves of genus 3 in the general case . 350
14.54  Doubling on curves of genus 3 with h(z) =1 . 351
15.6 TNAF representation . 359
15.9  Rounding-off of an element of Q[ ] . 361
15.11  Division with remainder in Z[7]. 361
15.13  Reduction of n modulo § . 362
15.17 7NAF,, representation 364
15.21 Recoding in 7-adic joint sparse form . 365
15.28 Expansion in T-adic form . . . . 370
15.34 Representation of § = (7% — 1)/(7 — 1) in Z]7] . 372
15.35 Computation of n-folds using T-adic expansions 373
15.41 GLV representation . 379
16.5 Relative prime representation . 391
16.8 Tate-Lichtenbaum pairing 392
16.11  Tate—Lichtenbaum pairingif £ > ¢ . 394
16.12 Tate-Lichtenbaum pairing for g = 1if & > 1 . 397
16.16  Tate—Lichtenbaum pairingforg =1ifk > 1 and k = kje . 402
16.17 Tate—Lichtenbaum pairing for g = 1 and k = 2e 402
17.25 SEA. 421
17.31  Lift j-invariants . 425
17.36  Lift kernel. . 428
17.38 Satoh’s point counting method . 430
17.54  Elliptic curve AGM 439
17.58 Univariate elliptic curve AGM . 441
17.71  Hyperelliptic curve AGM . . . 446
17.80 Kedlaya’s point counting method for p > 3 . 452
18.4 Cornacchia’s algorithm. . . 458
18.5 Construction of elliptic curves via CM 459
18.12 Construction of genus 2 curves via CM . 469



XXVi List of Algorithms
19.5 Shanks’ baby-step giant-step algorithm . 480
19.7 BJT variant of the baby-step giant-step algorlthm 481
19.9 Terr’s variant of the baby-step giant-step algorithm . 482
19.10 Baby-step giant-step algorithm in an interval 482
19.12  Floyd’s cycle-finding algorithm . 484
19.13 Gosper’s cycle finding algorithm 485
19.14  Brent’s cycle-finding algorithm . 485
19.16  Brent’s improved cycle-finding algorithm . 486
19.17 Nivash’ cycle-finding algorithm . 488
20.3 Index calculus . 498
21.1 Divisor decomposition . . 511
215 Computing the factor base 513
21.6 Smoothing a prime divisor . 513
21.7 Finding smooth principal divisors 514
21.8 Decomposition into unramified primes . . 514
21.9 Adleman—DeMarrais—Huang 515
21.12 Relation search . 517
21.16  Single large prime 520
21.18 Double large primes . 521
21.19  Full graph method 522
21.21  Simplified graph method . 524
21.24 Concentric circles method 525
22.7 Weil descent of C' via GHS 535
23.2 Cantor’s algorithm 552
23.12  Elliptic curve AGM . . 566
23.13  Construction of elliptic curves via CM 567
23.14 HECDSA - Signature generation . . 570
23.15 HECDSA — Signature verification 571
24.2 Tripartite key exchange 575
24.3 Identity-based encryption . 577
24.4 Private-key extraction 577
245 Identity-based decryption . 577
24.6 Signature in short signature scheme 578
24.7 Signature verification in short signature scheme : . 578
2410 Triple and add scalar multiplication . 581
24.12 Tate—Lichtenbaum pairing in characteristic 3 . 582
24.15 Construction of elliptic curves with prescribed embeddlng degree 587
25.7 Pollard’s rho with Brent’s cycle detection . 603
25.12 Fermat—Morrison—Brillhart factoring algorithm . 608
25.14  Sieve method . 609
25.15 The number field sieve. . 613
26.9 Sequential multiplication of two integers using left shift . 623
26.11  Sequential multiplication of two integers using right shift . 624



List of Algorithms XXVii
26.14 Recoding the multiplier in signed-digit representation . . 625
26.17 Recoding the multiplier in radix-4 SD representation 626
26.22  Addition using full adders . 628
26.49 Least-significant-digit-first shift-and- add mult|pI|cat|on in IE‘Qd 643
28.1 Modular reduction . 674
28.2 Modular reduction against t|m|ng attacks . 674
28.3 Double and add always 676
29.1 Atomic addition-doubling formulas 691
29.2 Elliptic curve doubling in atomic blocks. . 692
29.3 Elliptic curve addition in atomic blocks 693
29.4 Montgomery’s ladder . 697
29.6 Right to left binary exponentlatlon 707
29.7 SSCA and DSCA by random assignment . 710
29.8 Randomized GLV method 714
30.4 A pseudorandom number generator. 719






Preface

Information security is of the greatest importance in a world in which communication over open
networks and storage of data in digital form play a key role in daily life. The science of cryptography
provides efficient tools to secure information. In [MEOO™ 19g6] one finds an excellent definition
of cryptography as “the study of mathematical techniques related to aspects of information security
such as confidentiality, data integrity, entity identification, and data origin authentication” as well
as a thorough description of these information security objectives and how cryptography addresses
these goals.

Historically, cryptography has mainly dealt with methods to transmit information in a confiden-
tial manner such that a third party (called the adversary) cannot read the information, even if the
transmission is done through an insecure channel such as a public telephone line. This should
not be confused with coding theory, the goal of which is, on the contrary, to add some redundant
information to a message so that even if it is slightly garbled, it can still be decoded correctly.

To achieve secure transmission, one can use the oldest, and by far the fastest, type of crypto-
graphy, secret-key cryptography, also called symmetric-key cryptography. This is essentially based
on the sharing of a secret key between the people who want to communicate. This secret key is
used both in the encryption process, in which the ciphertext is computed from the cleartext and the
key, and also in the decryption process. This is why the method is called symmetric. The current
standardized method of this type is the AES symmetric-key cryptosystem. Almost all methods
of this type are based on bit manipulations between the bits of the message (after the message
has been translated into binary digits) and the bits of the secret key. Decryption is simply done by
reversing these bit manipulations. All these operations are thus very fast. The main disadvantages of
symmetric-key cryptography are that one shared secret key per pair must be exchanged beforehand
in a secure way, and that key management is more tricky in a large network.

At the end of the 1970’s the revolutionary new notion of public-key cryptography, also called
asymmetric cryptography, appeared. It emerged from the the pioneering work of Diffie and Hellman
published 1976 in the paper “New directions in cryptography” [DIHE 1976].

Public-key cryptography is based on the idea of one-way functions: in rough terms these are
functions, whose inverse functions cannot be computed in any reasonable amount of time. If we use
such a function for encryption, an adversary will in principle not be able to decrypt the encrypted
messages. This will be the case even if the function is public knowledge. In fact, having the
encryption public has many advantages such as enabling protocols for authentication, signature,
etc., which are typical of public-key cryptosystems; see Chapter 1.

All known methods for public-key cryptography are rather slow, at least compared to secret-key
cryptography, and the situation will probably always stay that way. Thus public-key cryptography
is used as a complement to secret-key cryptography, either for signatures or authentication, or for
key exchange, since the messages to be transmitted in all these cases are quite short.

There remains the major problem of finding suitable public-key cryptosystems. Many proposals
have been made in the 25 years since the invention of the concept, but we can reasonably say that
only two types of methods have survived. The first and by far the most widely used methods are
variants of the RSA cryptosystem. These are based on the asymmetrical fact that it is very easy to
create at will, quite large prime numbers (for instance 768 or 1024-bit is a typical cryptographic size
for reasonable security), but it is totally impossible (at the time this book is being written), except
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by some incredible stroke of luck (or bad choice of the primes) to factor the product of two primes
of this size, in other words a 1536 or 2048-bit number. The present world record for factoring an
RSA type number is the factoring of the 576-bit RSA challenge integer. The remarkable fact is
that this result was obtained without an enormous effort of thousands of PC’s interconnected via the
Internet. Using today’s algorithms and computer technologies it seems possible to factor 700-bit
numbers. Of course, this is much smaller than the number of bits that we mention. But we will see
in Chapter 25 that there are many subexponential algorithms for factoring which, although not as
efficient as polynomial time algorithms, are still much faster than naive factoring approaches. The
existence of these subexponential algorithms explains the necessity of using 768 or 1024-bit primes
as mentioned above, in other words very large keys.

The second type of method is based on the discrete logarithm problem (DLP) in cyclic groups
of prime order that are embedded in elliptic curves or more generally Jacobians of curves (or even
general abelian varieties) over finite fields. In short, if GG is a group, g € G, k € Z and h = gk,
the DLP in G consists in computing & knowing ¢g and h. In the case where G = (Z/nZ)* it can
be shown that the subexponential methods used for factoring can be adapted to give subexponential
methods for the DLP in G, so the security of such methods is analogous to the security of RSA,
and in particular one needs very large keys. On the other hand for elliptic curves no subexponential
algorithm is known for the DLP, and this is also the case for Jacobians of curves of small genus.
In other words the only attacks known for the DLP working on all elliptic curves are generic (see
Chapter 19). This is bad from an algorithmic point of view, but is of course very good news for
the cryptographer, since it means that she can use much smaller keys than in cryptosystems such as
RSA for which there exist subexponential attacks. Typically, to have the same security as 2048-bit
RSA one estimates that an elliptic curve (or the Jacobian of a curve of small genus) over a finite
field should have a number of points equal to a small multiple of a prime of 224 or perhaps 256 bits.
Even though the basic operations on elliptic curves and on Jacobians are more complicated than in
(Z/nZ)*, the small key size largely compensates for this, especially in restricted environments such
as smart cards (cf. Chapter 27) where silicon space is small.

Aim of the book

The goal of this book is to explain in great detail the theory and algorithms involved in elliptic
and hyperelliptic curve cryptography. The reader is strongly advised to read carefully what follows
before reading the rest of the book, otherwise she may be discouraged by some parts.

The intended audience is broad: our book is targeted both at students and at professionals,
whether they have a mathematical, computer science, or engineering background. It is not a text-
book, and in particular contains very few proofs. On the other hand it is reasonably self-contained,
in that essentially all of the mathematical background is explained quite precisely. This book con-
tains many algorithms, of which some appear for the first time in book form. They have been written
in such a way that they can be immediately implemented by anyone wanting to go as fast as pos-
sible to the bottom line, without bothering about the detailed understanding of the algorithm or its
mathematical background, when there is one. This is why this book is a handbook. On the other
hand, it is not a cookbook: we have not been content with giving the algorithms, but for the more
mathematically minded ones we have given in great detail all the necessary definitions, theorems,
and justifications for the understanding of the algorithm.

Thus this book can be read at several levels, and the reader can make her choice depending on
her interests and background.
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The reader may be primarily interested in the mathematical parts, and how some quite abstract
mathematical notions are transformed into very practical algorithms. For instance, particular men-
tion should be made of point counting algorithms, where apparently quite abstract cohomology
theories and classical results from explicit class field theory are used for efficient implementations
to count points on hyperelliptic curves. A most striking example is the use of p-adic methods. Ked-
laya’s algorithm is a very practical implementation of the Monsky—Washnitzer cohomology, and
Satoh’s algorithm together with its successors are very practical uses of the notion of canonical
p-adic liftings. Another example is the Tate duality of abelian varieties which provides the most
efficient realization of a bilinear structure opening new possibilities for public-key protocols. Thus
the reader may read this book to learn about the mathematics involved in elliptic and hyperelliptic
curve cryptography.

On the other hand the reader may be primarily interested in having the algorithms implemented
as fast as possible. In that case, she can usually implement the algorithms directly as they are
written, even though some of them are quite complex. She even can use the book to look for
appropriate solutions for a concrete problem in data security, find optimal instances corresponding
to the computational environment and then delve deeper into the background.

To achieve these aims we present almost all topics at different levels which are linked by numer-
ous references but which can be read independently (with the exception that one should at least have
some idea about the principles of public-key cryptography as explained in Chapter 1 and that one
knows the basic algebraic structures described in Chapter 2).

Mathematical background

The first level is the mathematical background concerning the needed tools from algebraic geome-
try and arithmetic. This constitutes the first part of the book. We define the elementary algebraic
structures and the basic facts on number theory including finite fields and p-adic numbers in Chap-
ters 2 and 3. The basic results about curves and the necessary concepts from algebraic geometry are
given in Chapter 4. In Chapter 5 we consider the special cases in which the ground field is a finite
field or equal to the complex numbers. In Chapters 6, 7, and 8 we explain the importance of Galois
theory and especially of the Frobenius automorphism for the arithmetic of curves over finite fields
and develop the background for pairings, Weil descent, and point counting.

On the one hand a mathematically experienced reader will find many topics well-known to her.
On the other hand some chapters in this part may not be easy to grasp for a reader not having a
sufficient mathematical background. In both cases we encourage the reader to skip (parts of) Part I
on first reading and we hope that she will come back to it after being motivated by applications and
implementations.

This skipping is possible since in later parts dealing with implementations we always repeat the
crucial notions and results in a summary at the beginning of the chapters.

Algorithms and their implementation

In Part II of the book, we treat exponentiation techniques in Chapter 9. Chapters 10, 11, and 12
present in a very concrete way the arithmetic in the ring of integers, in finite fields and in p-adic
fields. The algorithms developed in these chapters are amongst the key ingredients if one wants to
have fast algorithms on algebraic objects like polynomial rings and so their careful use is necessary
for implementations of algorithms developed in the next part.

In Part III, we give in great detail the algorithms that are necessary for addition in groups con-
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sisting of points of elliptic curves and of Jacobian varieties of hyperelliptic curves. Both generic
and special cases are treated, and the advantages and disadvantages of different coordinate systems
are discussed. In Chapter 13 this is done for elliptic curves, and in Chapter 14 one finds the results
concerning hyperelliptic curves. Chapter 15 is devoted to elliptic and hyperelliptic curves, which
have an extra structure like fast computable endomorphisms. The reader who plans to implement a
system based on discrete logarithms should read these chapters very carefully. The tables counting
the necessary field operations will be of special interest for her, and in conjunction with the arith-
metic of finite fields she will be able to choose an optimal system adapted to the given or planned
environment. (At this place we already mention that security issues must not be neglected, and as a
rule, special structures will allow more attacks. So Part V or the conclusions in Chapter 23 should
be consulted.) Since all necessary definitions and results from the mathematical background are
restated in Part III it can be read independently of the chapters before. But of course we hope that
designers of systems will become curious to learn more about the foundations.

The same remarks apply to the next Chapter, 16. It is necessary if one wants to use protocols
based on bilinear structures like tripartite-key exchange or identity-based cryptography. It begins
with a down-to-earth definition of a variant of the Tate pairing under the conditions that make it
practicable nowadays and then describe algorithms that become very simple in concrete situations.
Again it should be interesting not only for mathematicians which general structures are fundamental
and so a glimpse at Chapter 6 is recommended.

In Part IV of the book, it is more difficult to separate the background from the implementation.
Nevertheless we get as results concrete and effective algorithms to count the number of points on
hyperelliptic curves and their Jacobian varieties over finite fields. We present a complete version of
the Schoof-Elkies—Atkin algorithm, which counts the number of rational points on random elliptic
curves in Section 17.2 in the most efficient version known today. The p-adic methods for elliptic
and hyperelliptic curves over fields with small characteristics are given in Section 17.3 and the
method using complex multiplication is described in Chapter 18 for the relevant cases of curves
of genus 1, 2, and 3. In the end of this part, one finds algorithms in such a detailed manner that
it should be possible to implement point counting without understanding all mathematical details,
but some experience with computational number theory is necessary to get efficient algorithms,
and for instance in Chapter 18 it is advised that for some precomputations like determining class
polynomials a published list should be used. For readers who do not want to go into these details
a way out could be to use standard curves instead of generating their own. For mathematicians
interested in computational aspects this part of the book should provide a very interesting lecture
after they have read the mathematical background part. All readers should be convinced by Part IV
that there are efficient algorithms that provide in abundance instances for discrete logarithm systems
usable for public-key cryptography.

Until now the constructive point of view was in the center. Now we have to discuss security issues
and investigate how hard it is to compute discrete logarithms. In Part V we discuss these methods
in detail. The most important and fastest algorithms rely on the index calculus method which is in
abstract form presented in Chapter 20. In Chapter 21 it is implemented in the most efficient way
known nowadays for hyperelliptic curves. Contrary to the algorithms considered in the constructive
part it has a high complexity. But the computation is feasible even nowadays in wide ranges and
its subexponential complexity has as a consequence that it will become applicable to much larger
instances in the near future — if one does not avoid curves of genus > 4 and if one is not careful
about the choice of parameters for curves of genus 3. In Chapter 22 we describe how results from
the mathematical background like Weil descent or pairings can result in algorithms that transfer
the discrete logarithm from seemingly secure instances to the ones endangered by index calculus
methods. Though the topics of Part V are not as easily accessible as the results and algorithms in
Part III, every designer of cryptosystems based on the discrete logarithm problem should have a
look at least at the type of algorithms used and the complexity obtained by index calculus methods,
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and to make this task easier we have given a digest of all the results obtained until now in the third
level of the book.

Applications

In Part VI of the book we reach the third level and discuss how to find cryptographic primitives
that can be used in appropriate protocols such that the desired level of security and efficiency is
obtained. In Chapter 23 this is done for DL systems, and Chapter 24 deals with protocols using
bilinear structures. Again these chapters are self-contained but necessarily in the style of a digest
with many references to earlier chapters. One finds the mathematical nature of the groups used as
cryptographic primitives, how to compute inside of them, a security analysis, and how to obtain
efficient implementations. Moreover, it is explained how to transfer the abstract protocols, for
instance, signature schemes, from Chapter 1 to real protocols using elliptic and hyperelliptic curves
in a most efficient and secure way. The summary at the end of Chapter 23 is a scenario as to how
this book could be used as an aid in developing a system. At the same time it could give one (a bit
extreme) way how to read the book. Begin with Section 23.6 and take it as hints for reading the
previous sections of this chapter. If an algorithm is found to be interesting or important go to the
corresponding chapters and sections cited there; proceed to chapters in Parts II, III, IV and V but
not necessarily in this order and not necessarily in an exhaustive way. And then, just for fun and
better understanding, read the background chapters on which the implementations rely.

If the reader is interested in applications involving bilinear structures she can use the same recipe
as above but beginning in Chapter 24.

A not so direct but important application of elliptic curves and (at a minor level) hyperelliptic
curves in cryptography is their use in algorithms for primality testing and factoring. Because of the
importance of these algorithms for public-key cryptography we present the state of the art informa-
tion on these topics in Chapter 25.

Realization of Discrete Logarithm systems

Until now our topics were totally inside of mathematics with a strong emphasis on computational
aspects and some hints coming from the need of protocols. But on several occasions we have
mentioned already the importance of the computational environment as basis for optimal choices
of DL systems and their parameters. To understand the conditions and restrictions enforced by the
physical realization of the system one has to understand its architecture and the properties of the
used hardware. In Part VII, mathematics is at backstage and in the foreground are methods used
to implement discrete logarithm systems based on elliptic and hyperelliptic curves in hardware and
especially in restricted environments such as smart cards.

In Chapter 26 it is shown how the arithmetic over finite fields is realized in hardware. In Chap-
ter 27 one finds a detailed description of a restricted environment in which DL systems will have
their most important applications, namely smart cards. The physical realization of the systems
opens new lines of attacks, so called side-channel attacks, not computing the discrete logarithm to
break the system but relying, for instance, on the analysis of timings and power consumption during
the computational processes. The background for such attacks is explained in Chapter 28 while
Chapter 29 shows how mathematical methods can be used to develop countermeasures.

A most important ingredient in all variants of protocols used in public-key cryptography is ran-
domization. So one has to have (pseudo-)random number generators of high quality at hand. This
problem and possible solutions are discussed in Chapter 30. As a side-result it is shown that elliptic
or hyperelliptic curves can be used with good success.
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In this chapter we introduce the basic building blocks for cryptography based on the discrete log-
arithm problem that will constitute the main motivation for considering the groups studied in this
book. We also briefly introduce the RSA cryptosystem as for use in practice it is still an important
public-key cryptosystem.

Assume a situation where two people, called Alice and Bob in the sequel (the names had been
used since the beginning of cryptography because they allow using the letters A and B as handy
abbreviations), want to communicate via an insecure channel in a secure manner. In other words, an
eavesdropper Eve (abbreviated as E) listening to the encrypted conversation should not be able to
read the cleartext or change it. To achieve these aims one uses cryptographic primitives based on a
problem that should be easy to set up by either Alice, or Bob, or by both, but impossible to solve for
Eve. Loosely speaking, infeasibility means computational infeasibility for Eve if she does not have
at least partial access to the secret information exploited by Alice and Bob to set up the problem.

Examples of such primitives are RSA, cf. [PKCS], which could be solved if the integer factor-
ization problem was easy, i.e., if one could find a nontrivial factor of a composite integer n, and the
discrete logarithm problem, i.e., the problem of finding an integer k& with [k]P = @Q where P is a
generator of a cyclic group (G,®) and ) € G. These primitives are reviewed in Sections 1.4.3
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and 1.5. They are applied in a prescribed way given by protocols. We will only briefly state the
necessary problems and hardness assumptions in Section 1.6 but not go into the details.

Then we go briefly into issues of primality proving and integer factorization. The next section
is devoted to discrete logarithm systems. This is the category of cryptographic primitives in which
elliptic and hyperelliptic curves are applied. Finally, we consider protocols, i.e., algorithms using
the cryptographic primitive to establish a common key, encrypt a message for a receiver, or sign
electronically.

1.1 Cryptography

In ancient times, the use of cryptography was restricted to a small community essentially formed by
the military and the secret service. The keys were distributed secretly by a courier and the same key
allowed to encipher and, later, decipher the messages. These symmetric systems include the ancient
Caesar’s cipher, Enigma, and other rotor machines. Today’s standard symmetric cipher is the AES
(Advanced Encryption Standard) [FIPS 197]. Symmetric systems still are by far the fastest means
to communicate secretly — provided that a joint key is established.

In order to thrive, e-commerce requires the possibility of secure transactions on an electronically
connected global network. Therefore, it is necessary to rely on mechanisms that allow a key ex-
change between two or more parties that have not met each other before. One of the main features
of public-key cryptography is to relax the security requirement of the channel used to perform a
key exchange: in the case of symmetric cryptography it must be protected in integrity and confiden-
tiality though integrity suffices in public-key cryptography. It allows for building easier-to-set-up
and more scalable secured networks. It also provides cryptographic services like signatures with
non-repudiation, which are not available in symmetric cryptography. The security of public-key
cryptography relies on the evaluation of the computational difficulty of some families of mathemat-
ical problems and their classification with respect to their complexity.

1.2 Complexity

The aim of complexity theory is to define formal models for the processors and algorithms that we
use in our everyday computers and to provide a classification of the algorithms with respect to their
memory or time consumption.

Surprisingly all the complex computations carried out with a computer can be simulated by an au-
tomaton given by a very simple mathematical structure called a Turing machine. A Turing machine
is defined by a finite set of states: an initial state, a finite set of symbols, and a transition function. A
Turing machine proceeds step-by-step following the rules given by the transition function and can
write symbols on a memory string. It is then easy to define the execution time of an algorithm as
the number of steps between its beginning and end and the memory consumption as the number of
symbols written on the memory string. For convenience, in the course of this book we will use a
slightly stronger model of computation, called a Random Access Machine because it is very close to
the behavior of our everyday microprocessors. Then determining the execution time of an algorithm
boils down to counting the number of basic operations on machine words needed for its execution.
For more details, the reader should refer to [PAP 1994].

The security of protocols is often linked to the assumed hardness of some problems. In the theory
of computation a problem is a set of finite-length questions (strings) with associated finite-length
answers (strings). In our context the input will usually consist of mathematical objects like integers
or group elements coded with a string. The problems can be loosely classified into problems to
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compute something, e.g., a further group element and problems that ask for a yes or no answer.

Definition 1.1 A problem is called a decision problem if the problem is to decide whether a state-
ment about an input is true or false.

A problem is called a computation problem if it asks to compute an output maybe more elaborate
than true or false on a certain set of inputs.

One can formulate a computation problem from a decision problem. Many protocols base their
security on a decision problem rather than on a computation problem.

Example 1.2 The problem to compute the square root of 16 is a computation problem whereas the
question, whether 4 is a square root of 16, is a decision problem. Here, the decision problem can be
answered by just computing the square 4> = 16 and comparing the answers.

A further decision problem in this context is also to answer whether 16 is a square. Clearly this
decision problem can be answered by solving the above computation problem.

Example 1.3 A second important example that we will discuss in the next section is the problem to
decide whether a certain integer m is a prime. This is related to the computation problem of finding
the factorization of m.

Given a model of computation, one can attach a certain function f to an algorithm that bounds
a certain resource used for the computations given the length of the input called the complexity
parameter. If the resource considered is the execution time (resp. the memory consumption) of the
algorithm, f measures its time complexity (resp. space complexity). In fact, in order to state the
complexity independently from the specific processor used it is convenient to express the cost of an
algorithm only “up to a constant factor.” In other words, what is given is not the exact operation
count as a function of the input size, but the growth rate of this count.

The Schoolbook multiplication of n-digit integers, for example, is an “n~ algorithm.” By this it is
understood that, in order to multiply two n-digit integers, no more than ¢ n? single-digit multiplica-
tions are necessary, for some real constant ¢ — but we are not interested in c. The “big-O” notation
is one way of formalizing this “sloppiness,” as [GAGE 19gg] put it.

Definition 1.4 Let f and g be two real functions of s variables. The function g(Ny, ..., Ny) is of
order f(N1,...,Ny) denoted by O(f(Ny,...,Ny)) if for a positive constant ¢ one has

|g(N17"'7NS)| <Cf(‘]\fla“'v]\fs)v

with N; > N for some constant N. Sometimes a finite set of values of the tuples (N, ..., Ny) is
excluded, for example those for which the functions f and g have no meaning or are not defined.
Additional to this “big-O” notation one needs the “small-o ’notation.
The function (N1, ..., N;) is of order o( f (N1, ..., Ny)) if one has

g(Nl,...,NS) -0
Ni,...,Ns—o00 f(Nl,...,NS) '

Finally we write f(n) =0(g(n)) as a shorthand for f(n) = O(g(n)1g" g(n)) for some k.

Note that we denote by lg the logarithm to base 2 and by In the natural logarithm. As these ex-
pressions differ only by constants the big-O expressions always contain the binary logarithm. In
case other bases are needed we use log, b to denote the logarithm of b to base a. This must not be
confused with the discrete logarithm introduced in Section 1.5 but the meaning should be clear from
the context.
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Example 1.5 Consider g(N) = 10N? + 30N + 5000. It is of order O(N?) as for ¢ = 5040 one
has g(N) < ¢N? for all N. We may write g(N) = O(N?). In addition g(N) is o(N3).

Example 1.6 Consider the task of computing the n-fold of some integer m. Instead of computing
nxm=m-+m+ ---+ m (n-times) we can do much better reducing the complexity of scalar
multiplication from O(n) to O(lgn). We make the following observation: we have 4m = 2(2m)
and a doubling takes about the same time as an addition of two distinct elements. Hence, the number
of operations is reduced from 3 to 2. This idea can be extended to other scalars: 5m = 2(2m) +m
needing 3 operations instead of 4. In more generality let n = Zé;é n;2,n; € {0, 1} be the binary
expansion of n with [ — 1 = |lgn]. Then

nxm=2(2(---2(2(2m + nj_am) + nj_gm) + - - - + nam) + nym) + ngm.

This way of computing n x m needs [ — 1 doublings and Zé;é n; < [ additions. Hence, the
algorithm has complexity O(lgn). Furthermore, we can bound the constant ¢ from above by 2.
Algorithms achieving a smaller constant are treated in Chapter 9 together with a general study of
scalar multiplication.

An algorithm has running time exponential in N if its running time can be bounded from above
and below by e/ (") and e9(Y) for some polynomials f, g. In particular, its running time is of order
O(ef(N)). Its running time is polynomial in N if it is of order O(f(N)) Algorithms belonging
to the first category are computationally hard, those of the second are easy. Note that the involved
constants can imply that for a certain chosen small [V an exponential-time algorithm may take less
time than a polynomial-time one. However, the growth of NV to achieve a certain increase in the
running time is smaller in the case of exponential running time.

Definition 1.7 For the complexity of algorithms depending on /N we define the shorthand
Ln(a,¢) :==exp((c+0(1))(In N)*(Inln N)' =)

with0 < a < 1 and ¢ > 0. The o(1) refers to the asymptotic behavior of N. If the second parameter
is omitted, it is understood that it equals 1/2.

The parameter « is the more important one. Depending on it, Ly («, ¢) interpolates between poly-
nomial complexity for « = 0 and exponential complexity for &« = 1. For a < 1 the complexity is
said to be subexponential.

One might expect a cryptographic primitive to be efficient while at the same time difficult to
break. This is why it is important to classify the hardness of a problem — and to find instances of
hard problems. Note that for cryptographic purposes, we need problems that are hard on average,
i.e., it should be rather easy to construct really hard instances of a given problem. (The classification
of problems P and not P must therefore be considered with care, keeping in mind that a particular
problem in NP can be easy to solve in most cases that can be constructed in practice, and there need
to be only some hard instances for the problem itself to let it be in NP.)

In practice, we often measure the hardness of a problem by the complexity of the best known
algorithm to solve it. The complexity of an algorithm solving a particular problem can only be
an upper bound for the complexity of solving the problem itself, hence security is always only “to
our best knowledge.” For some problems it is possible to give also lower bounds showing that an
algorithm needs at least a certain number of steps. It is not our purpose to give a detailed treatment
of complexity here. The curious reader will find a broader and deeper discussion in [GRKNT 1994,
Chapter 9], [SHP 2003], and [BRBR 1996, Chapter 3].
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1.3 Public-key cryptography

In public-key cryptography, each participant possesses two keys — a public key and a private key.
These are linked in a unique manner by a one-way function.

Definition 1.8 Let X* be the set of binary strings and f be a function from 3* to ¥*. We say that
f is a one-way function if

« the function f is one-on-one and for all € ¥*, f(x) is at most polynomially longer or
shorter than x

o forall z € ¥*, f(x) can be computed in polynomial time

o there is no polynomial-time algorithm which for all y € X* returns either “no” if
y ¢ Im(f) orz € ¥* such that y = f(x).

Remark 1.9 So far, there is no proof of the existence of a one-way function. In fact, it is easy
to see that it would imply that P # NP, which is a far reaching conjecture of complexity theory.
This means in particular that the security of public-key cryptosystems always relies on the unproven
hypothesis of the hardness of some computational problem. But in the course of this book, we are
going to present some families of functions that are widely believed to be good candidates for being
a one-way function and we now give an example of such a function.

Example 1.10 Let ¥ = {0, 1,0} be the alphabet with three letters. Note that even if a computer
manipulates only bits of information, that is an alphabet with two letters, it is easy by grouping the
bits by packets of [1g |3|] to simulate computations on Y. The character O will serve as separator in
our data structure. Let s be the function that assigns to each integer n € N its binary representation.
It is then possible to define a function f from >* to X* such that for all couples of prime numbers
(p, q) the function evaluates as f (s(p) || O s(¢)) = s(pq) with || the concatenation. As there exists
a polynomial-time algorithm to multiply two integers, f satisfies clearly the two first conditions of
a one-way function. It is also widely believed that there is no polynomial-time algorithm to invert
f but up to now there is no proof of such an assumption. The next section gives some details on the
complexity of the best algorithms known in order to invert this function.

Given a one-way function one can choose as the private key an ¢ € X* and obtains the public
key f(a). This value can be published since it is computationally infeasible to defer a from it.
Complexity theory considered in the previous section gives a mathematical measure to define what
is meant by “computationally infeasible.” For some applications it will be necessary to have a
special class of computational one-way functions that can be inverted if one possesses additional
information. These functions are called trapdoor one-way functions.

If an encrypted message is transmitted, the cryptographic framework has to ensure that no other
party can obtain any information on the message or change it without being noticed. To map the
paper and pencil based world to electronic processes, other issues have to be solved in order to
allow electronic commerce and contracts. Just as a handwritten signature is bound to the signer by
the uniqueness of his handwriting, the message as signature and text are linked by physical means,
and any change of the message would be visible, an electronic signature needs to guarantee the
following:

« Reliability: The signature is bound uniquely to the signer.
« Non-repudiation: The signer cannot deny his signature.
« Unforgeability: The signature is bound to the signed text.

More details for all material treated in this section can be found in [MEOO™ 1996, STI 1995,
SCH 1996].
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1.4 Factorization and primality

This section is devoted to prime numbers. We need them to construct finite fields and the cryp-
tosystems in which we are interested are designed around groups of prime order. The prime number
theorem gives an estimate on the number 7(z) of primes less than .
Theorem 1.11 (Prime number theorem) Asymptotically there exist

T

d
(@)~ | =

2 Iny
prime numbers less than x. A slightly worse estimate that is easier to remember is

x

1.4.1 Primality

In the applications we envision we must be sure that a given integer N is prime. The most obvious
way is to try for all integers n < v/ N whether N = 0 (mod 7) in which case one even has found a
divisor of V. However, this method requires O(\/N ) modular reductions, which is far too large for
the size of N encountered in practice.

In fact, it is too time-consuming to prove primality, or for that matter compositeness, of a given
integer by failing or succeeding to find a proper factor of it. The best primality test algorithms
described in Chapter 25 will only prove N to be prime and will not output any divisor in case it is
not. Most algorithms will be probabilistic in nature in the sense that one output is always true while
the other is only true with a certain probability. Iterating this algorithm allows us to enlarge the
probability that the answer that was given only with a certain probability actually holds true. These
techniques offer quite good performance.

To prove primality using probabilistic algorithms one usually starts with some iterations of an
algorithm whose output “nonprime” is always correct while the output “prime” is true only with a
certain probability. After passing some rounds one uses an algorithm that is correct when it outputs
“prime.”

The reason for this order is that usually the algorithms of the first type have a shorter running
time and allow us to detect composite integers very efficiently. Factoring algorithms, on the other
hand, are usually much slower.

1.4.2 Complexity of factoring

Even though we shall return to this matter in Chapter 25 we briefly recall the complexity of finding
factors of composite numbers.

By brute force one can check divisibility by 2, 3, 5, 7, 11, and so on in succession. Even if NV
is 1000 decimal digits long (about 3222 bits), it takes only a few seconds on a modern personal
computer to divide it by all integers up to 107. Checking whether a large number NV is divisible
by n (where N is much larger than n) by trial division requires at most O (Ig(n)1g(/N)) operations
assuming simple techniques and

o(mm“&%) — 0(Ig(n)* 15(V))

asymptotically.
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The elliptic curve method (ECM) of factorization given in Section 25.3.3 has expected complexity
Lp(%, v/2) for finding the smallest prime factor p of N. It is expected that in the near future this
method will be able to find 60-digits, i.e., 200-bit factors.

Boosted by RSA challenges [RSA] (see below) there has been a lot of research on the number
field sieve methods for factoring integers. In theory the number field sieve should be able to factor
any number in heuristic expected time

LN(%’ (%)1/3) where (%)1/3 ~ 1.923.
This algorithm was long thought not to be practical, but recent years have seen tremendous success

in its implementation and its improvements. The largest RSA modulus factored so far is the 200-
digit RSA challenge integer, a feat achieved by Franke and Kleinjung [WEI 2005, CON 2005].

1.4.3 RSA

We give only the schoolbook method here. It is understood that one should not implement RSA this
way. The RSA cryptosystem [RISHT 1978] uses an integer N = pq which is the product of two
primes p and ¢. The system uses the modular relation m®~1(@~1 = 1 (mod pq), which holds for
every m coprime to N. This relation will be proved in Section 2.1.2 in a more general context.

Alice’s public and secret keys are two integers e and d such that ed = 1 (mod (p — 1)(¢ — 1))
(this alone implies that e must be relatively prime to p — 1 and ¢ — 1). If Bob wants to send a
message m to Alice, where we assume that m is a natural number smaller than pq, he computes
¢ = m* mod n. To recover the message, Alice simply computes

¢ =met = !0 =y (mod N)

by the relation above. In the RSA cryptosystem, the one-way function is thus m — m® mod N.

The security is based on the RSA assumption, namely the assumption that given e, m® mod IV
and N one cannot recover m. This would be easy if one were able to compute d from the given
information, e.g., if (p — 1)(¢ — 1) would be known. Apparently this could be done if one could
factor V. However, factoring is not easy as shown in the previous section.

The primes p and ¢ are usually chosen of similar bit length, in order to prevent as much as
possible attacks arising from future development of algorithms whose complexity depends on the
smallest prime. At the same time p and ¢ cannot be too close, otherwise if p = L\/N | +a,q =
|V/N | — b for some small a, bone has N = pg = [v/N|? + (a — b)| /N | — ab. From this one gets
N — [V N|? = (a —b)|V/N| — ab. Performing a division with remainder by | /N | one obtains ab
and a — b provided they are smaller than [v/N |.

It is not clear whether the RSA problem, which can be loosely formulated as inverting the function
m +— m® mod N, is equivalent to the factorization problem. It is possible, in theory, that there is
some way of computing m from m¢ that does not involve determining p and ¢. In the original RSA
paper, the authors say:

“It may be possible to prove that any general method of breaking our scheme yields
an efficient factoring algorithm. This would establish that any way of breaking our
scheme must be as difficult as factoring. We have not been able to prove this conjecture,
however.”

However, as of today, if p and q are large enough, the cryptosystem can be considered secure. Large
enough currently means that the two numbers are of at least 500 bits and that their product has about
1024 bits.
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1.5 Discrete logarithm systems

In this section we introduce a second kind of problem where hard instances can be constructed. In
practice a discrete logarithm (DL) system is usually based on a cyclic group of prime order. For
some protocols considered later on, a commutative semigroup would be enough.

In this book, we are mainly concerned with cryptographic use of elliptic and hyperelliptic curves
and there one works in a group, hence, we restrict our attention to this case here as well. For the
definition of a group and the examples used in the sequel, we refer to Chapter 2.

1.5.1 Generic discrete logarithm systems

Let (G, @) be a cyclic group of prime order ¢ and let P be a generator of G. The map

v:Z — G
n — [P=P®P&®---®P
—_— ——

n-times

has kernel ¢Z, thus ¢ leads to an isomorphism between (G, ®) and (Z/¢Z,+). The problem of
computing the inverse map is called the discrete logarithm problem (DLP) to the base of P. It is
the problem given P and @ to determine k& € Z such that Q = [k]P, i.e., to find & € N such that
w(k) = Q. The discrete logarithm of Q to the base of P is denoted by log(Q). Note, that it is
unique only modulo the group order ¢. The complexity of this problem depends on the choice of G
and @. To show the dependency on the generator P of G we speak of the DL system (G, ®, P).

Example 1.12 Let (G, ®) = (Z/{Z,+) with generator 1 + ¢Z. The discrete logarithm of n + (Z
is simply given by n. Also, if the generator is chosen to be a + ¢7Z for some integer a, this problem
is easy to solve as it is nothing but computing the inverse modulo ¢. In Chapter 10 this is shown to
have complexity polynomial in the size of the operands, i.e., in lg ¢.

Hence, this group cannot be used in cryptographic applications.

Example 1.13 Choose a prime p such that ¢ divides p — 1. Choose ¢ # 1 in Z/pZ with ¢¢ = 1
(i.e., ¢ is a primitive ¢-th root of unity). Then (G, ®) = ({¢), x) and p(n) = ("

In Chapter 19, we will show that this DLP is of subexponential complexity, thus harder than in
the previous example but not optimal.

An obvious generalization is to work in extension fields F,, with ¢ = p¢, ¢ | p? — 1 for p prime.
To represent the finite field . one fixes an irreducible polynomial m(X) € F,[X] of degree
d and uses the isomorphism F,. ~ F,,[X]/(m(X)). For an introduction to finite fields and their
arithmetic see Chapters 2 and 11.

Systems based on the DLP in the multiplicative group of finite fields are easy to construct. Start-
ing with a prime ¢ of appropriate size one searches for p and d such that £ | p? — 1. For appro-
priately chosen subgroups, compression methods based on traces such as LUC [SMSK 1995] and
XTR [LEVE 2000] can be used to represent the subgroup elements. These groups additionally
allow faster group operations.

The groups associated to elliptic and hyperelliptic curves of small genus that will be studied in the
sequel of the book are believed to have a DLP of exponential complexity.

To efficiently implement a DL system one needs to find good instances of groups in which the
DLP is hard: in order to put aside easy instances this implies in particular that the group size can
be efficiently computed to ensure that there exists a large prime order subgroup (G, @, P). We also
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need to have a short representation of group elements needing O(lg ¢) space and the group operation
Q@ @ R needs to be performed efficiently for any input @), R € G. The complexity of computing
the DL is studied in Chapter 19. Note that the computation of the order of P is a special instance
for the DLP, namely ord(P) = logp 1, where 1 is the neutral element in G. Techniques for scalar
multiplication are studied in Chapter 9. For groups based on elliptic and hyperelliptic curves, see
Chapters 13 and 14.

1.5.2 Discrete logarithm systems with bilinear structure

Some groups have an additional structure that can either be considered a weakness, as it allows
transfers (see below), or an advantage, as it can be used constructively in special protocols (cf.
Section 24.1.2).

Definition 1.14 Assume that a DL system is given by (G, @) a group of prime order ¢ and that
there is a group (G’, @) of the same order ¢ in which we can compute “as fast” as in G. Assume
moreover that (H, ) is another DL system and that a map

e:GxG — H

satisfies the following requirements:

« the map e is computable in polynomial time (this includes that the elements in H need
only O(lg £) space),
« forall ny,n2 € N and random elements (P;, Py) € G x G’ we have

e([m] Py, [n2] Py) = [ninzle(Py, Py),

« the map e is nondegenerate. Hence, for random P’ € G’ we have e(Py, P') = e(Ps, P’)
ifand only if P, = P» .

Then we call (G, ¢) a DL system with bilinear structure.

There are two immediate consequences:

« Assume that G = G’ and hence
e(P,P) #0.

Then for all triples (P;, P, P3) € (P)? one can decide in time polynomial in lg ¢
whether

logp(Ps) = logp(P1)logp(F2).

« The DL system G is at most as secure as the system H. Even if G # G’ one can transfer
the DLP in G to a DLP in H, provided that one can find an element P’ € G’ such that
the map P — e(P, P') is injective, i.e., it induces an injective homomorphism of G into
a subgroup of H. Hence, instead of solving the DLP in G one transfers the problem to
H where it might be easier to solve.

1.6 Protocols

This book is concerned with cryptographic applications of elliptic and hyperelliptic curves. So far
we have described DL systems in an abstract setting. In this section we motivate that groups are a
good choice and show how two or more parties can agree on a joint secret key, exchange encrypted
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data, and sign electronically. We also show how the identity of a participant can be used to form his
public key.

But this book is not mainly concerned with protocols. We just show the bare-bones schoolbook
protocols. Their use is twofold: they should motivate the reader to consider DL systems in more
detail and at the same time highlight which computational problems need to be solved in order to
get fast cryptographic systems. For an actual implementation one needs to take care not to weaken
the system in applying a flawed protocol. For a great overview consider [MEOO™ 19g6].

1.6.1 Diffie-Hellman key exchange

The publication of Diffie and Hellman’s seminal paper New directions in cryptography [DIHE 1976]
can be seen as the start of public-key cryptography in public. We describe the Diffie—Hellman
(DH )protocol for an abstract group (G, @®). In their paper they proposed the multiplicative group of
a finite prime field (cf. Example 1.13).

The two parties Alice (A) and Bob (B) have the public parameters (G, ®, P) and want to agree
on a joint key that is a group element. Once they are in the possession of such a joint secret P, they
can use a key derivation function to derive a bit-string useful as a key in a symmetric system. To
this aim A secretly and randomly chooses ax € N (€ p means choosing at random) and computes
Pp = [aa]P while B ends up with Pg = [ag]P. They publicly exchange these intermediate
results. If the DLP (cf. Section 1.5) is hard in G one cannot extract aa from Pj or ag from Pg.
Upon receiving Py, A computes P, = [aa]Pg = [aaap]P. Now B can obtain the same result as
[ap]Pa = [apaa]P, thus they are both in possession of a group element Py, which should not be
computable from the public values Py and Pp.

Clearly, this last assumption does not hold if the DLP in (G, @) is easy. The problem of comput-
ing [aaag|P given [aa]P and [ag]P is called the computational Diffie—Hellman problem (CDHP).

Maurer and Wolf [MAWO 19g9] study the equivalence of the CDHP and the DLP. An important
tool in their proof are elliptic curves of split group order. They show that if such curves can be
found, then an oracle to solve the CDHP can be used to solve DLP in polynomially many steps. For
groups related to elliptic curves this question is studied in [MUSM™ 2004].

In most DL systems it is also hard to verify whether a proposed solution to the CDHP is correct.
The problem given [aa | P, [ag] P and [c] P to decide whether [c]| P = [aaap]P is called the decision
Diffie-Hellman problem (DDHP). Obviously, it is no harder than CDHP. For the DLP a decision
version is not useful to consider as one could simply try the pretended solution.

If (G, @) is a DL system with bilinear structure (Section 1.5.2), the DDHP can easily be solved
by comparing e([aa| P, [ag]P) = [aaas](e(P, P)) to e(P, [c]P) = [¢|(e(P, P)). Groups in which
the CDHP is assumed to be hard while the DDHP is easy are called Gap-Diffie—Hellman groups.

As usual the presented version is not ready to implement. An eavesdropper Eve (E) could inter-
cept the communication and act as Bob for Alice sending [ag) P to her and as Alice for Bob sending
her key to him as well. Then she would have a joint key P o with Alice and one with Bob P, p.
Hence, she can decipher any message from Alice intended for Bob and encipher it again for Bob
using Py, 3. This way, no party would notice her presence and she could read any message. This
attack is called the man-in-the-middle attack.

1.6.2 Asymmetric Diffie—Hellman and ElGamal encryption

The Diffie-Hellman key exchange requires that both parties to work online, i.e., they are both active
at the same time. The following two protocols are asymmetric also in the sense that the sender
and the receiver perform different steps and that there are two different keys — a private key and a
public key.
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If the DLP is hard in (G, @) then Alice could just as well publish her public key Py = [aa]P in a
directory. The process of computing the public and private key pair is called key generation. The
systems described in this section require that the receiver of the message has already set up and
published his public key. The problem of how to make accessible this data and put confidence in the
link between A and her public key is considered in the literature on public-key infrastructure (PKI).

Algorithm 1.15 Key generation

INPUT: The public parameters (G, ®, P).
OUTPUT: The public key Pa and private key aa .

1. aa €rN [choose a at random in N]
2. Pa «— [aA]P

3. return Pj and aa

The random choice should be done by the computing device to avoid biases introduced by humans,
like choosing small numbers to facilitate the computations. In Chapter 30 we deal with random
number generators.

If Bob wants to send the message m to Alice, he looks up her public key in a directory. He can
perform an asymmetric version of the Diffie—-Hellman key exchange if there is a map v : G —
IC from the group to the keyspace K and a symmetric cipher £, depending on the key . The
decryption function, i.e., the inverse of F, is denoted by D,.

Algorithm 1.16 Asymmetric Diffie—Hellman encryption

INPUT: A message m, the public parameters (G, @, P) and the public key Pa € G.
OUTPUT: The encrypted message (Q, ¢).

1. kerN

Q — kP
Py, — [k]Pa
K — (Pr)
¢ «— Ei(m)

return (Q,c)

® o & » P

To decrypt, Alice computes P, = [aa]Q, using her private key aa, from which she determines
k = (P ). She recovers the plaintext as m = Dy(c).
The randomly chosen nonce k € p N makes this a randomized encryption.

If there is an invertible map  from the message space M to G one can also use ElGamal encryption.

Algorithm 1.17 ElGamal encryption

INPUT: A message m, the public parameters (G, @, P) and the public key Pa € G.
OUTPUT: The encrypted message (Q, ¢).

1. kerN
2. Q< [k]P
3. Py« [k]Pa
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4. R« Py ®¢(m)
5. return (Q,R)

To decrypt, Alice uses P, = [aa]Q and computes m = ¢ (R © Py).

Note that by this method one can only encrypt messages of size at most lg £, where ¢ is the order
of G. It is possible to encrypt longer messages using a mode of operation making multiple calls
to the Algorithm 1.17; however, this is hardly ever done because of the relative slowness of this
encryption scheme. Instead the transmitted message m will act as a secret key in some following
symmetric encryption.

1.6.3 Signature scheme of ElIGamal-type

An electronic signature should bind the signer to the content of the signed message. A hash function
(see [MEOO™ 1996])isamap h : S — T between two sets S, T', where usually |S| > |T|, e.g., the
input is a bit-string of arbitrary length and the output has fixed length.

Additional properties are required from cryptographic hash functions:

 Preimage resistant: for essentially all outputs ¢ € T it is computationally infeasible to
find any s € S such that ¢ = h(s).

o 2nd-preimage resistant: for any given s; € S it is computationally infeasible to find a
different s, € S such that h(s;) = h(s2).

« Collision resistant: it is computationally infeasible to find any distinct inputs s, s such
that h(s1) = h(sa2).

For practical use one requires the signature to be of fixed length no matter how long the signed
message is. Therefore, one only signs the hash of the message. The hash function should be
collision resistant as otherwise a malicious party could ask to sign some innocent message m; and
use the signature, which only depends on h(m;), as a signature for a different message ms with
h(m1) = h(msz). We shall also apply hash functions to elements of the group G. Here, we assume
that these are represented via a bit-string and thus write /(Q) for Q € G.

To compute an electronic signature, Alice must have performed Algorithm 1.15 in advance.

Algorithm 1.18 ElGamal signature

INPUT: A message m, the public parameters (G, @, P) with |G| = £ and the private key aa € G.
OUTPUT: The signature (@, s) on m.

1. kerN

2. Q< [k]P

3. s (k7' (h(m) — aah(Q)) mod ¢)
4. return (Q,s)
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Remarks 1.19

(i) In the signature scheme the short term secret, i.e., the random nonce k, must be kept
secret as otherwise the long-term secret, the private key aa, can be recovered as

aa = h(Q) ' (h(m) — sk) (mod ¢).

(ii) There are many variants of ElGamal signature schemes. Some have the advantage that
one need not invert £ modulo the group order. This is especially interesting if one is
concerned with restricted environments (cf. Chapters 27 and 26) as this way one avoids
implementing modular arithmetic for two different moduli (finite field arithmetic for
the group arithmetic and computations modulo ¢). An overview of different schemes is
provided in [MEOO™ 1996, Note 11.6]; e.g., the signature can also be given by

s = (kh(m) 4+ aah(Q)) mod ¢
with notations as above.

A signature can be verified by everybody.

Algorithm 1.20 Signature verification

INPUT: A message m, its signature (@, s) from Algorithm 1.18, the public parameters (G, @, P)
where |G| = ¢, and the public key Pa.
OUTPUT: Acceptance or rejection of signature.

1. R [R(Q)]Par @ [s]Q

2. Ry « [h(m)|P

3. if R1 = R return “acceptance” else return “rejection”

The algorithm is valid as a correct signature gets accepted. Namely,
Ri = Q)| Pa&[s]Q = [arh(Q)| P& [ks]P = [aah(Q)+h(m) —ash(Q)]P = [h(m)]P = Ro.

In Line 1 one can apply simultaneous multiplication techniques (cf. Chapter 9).

Depending on the special properties of the group it might be possible to transmit only some part
of Q. The standard for digital signatures (DSA) works in a subgroup of the multiplicative group of
a finite field. For elliptic curves the standard is called the elliptic curve digital signature algorithm
(ECDSA) [ANSI X9.62], an adaption of Algorithm 1.18. The German standard GECDSA avoids
inversions modulo the group order. So far, there is no standard for hyperelliptic curves. A version
analogous to the ECDSA can be found in [AVLA 2005].

1.6.4 Tripartite key exchange

We now give an example of how the additional structure of a DL system with bilinear structure can
be used in protocols. We come back to this study in Chapter 24 where we apply special bilinear
maps for elliptic and hyperelliptic curves. Here, we show how three persons can agree on a joint
secret group element using using two DL systems, (G, ®) and (H, B), and e, a bilinear map from
G x G into H and needing only one round [JOU 2000]. Note that there are other protocols based
on the usual DH protocol to solve this for arbitrarily many group members, but in two rounds
[BUDE 1995, BUDE 1997], and clearly the protocol as such is a schoolbook version that can easily
be attacked by a man-in-the-middle attack.
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The following algorithm shows the computations done by person A.

Algorithm 1.21 Three party key exchange

INPUT: The public parameters (G, @, H, H, P, ) with the bilinear map e.
OUTPUT: The jointkey K € H.

1. aa €r N

Pp «— [aa]P

send Pa to B, C

receive Pg, Pc from B, C
K — [aa](e(Ps, Pc))

S T

return K

Applying this algorithm, A, B, and C obtain the same element of H as

laa](e(Ps, Pc)) = laaasac](e(P, P)) = [as](e(Pa, Pc)) = [ac](e(Pa, Pg)).

Obviously, this protocol can be extended to more parties by the same methods as the DH protocol.

1.7 Other problems

Few problems have been investigated as thoroughly as the RSA and discrete logarithm problem.
Furthermore, these problems are suitable for designing schemes that address most of today’s needs:
key exchange, en- and decryption, and generation and verification of digital signatures. After more
than 20 years of research, they still stand as hard ones, with discrete logarithms in the Jacobians of
curves offering the advantage of shorter keys compared to RSA and the gap becomes larger as the
security demands increase. In a certain sense, curves offer balanced systems: they allow to design
protocols for all applications, offering good performance.

Besides RSA and DLP some other computationally hard problems have been proposed as a basis
for cryptosystems. Some of the systems designed around these problems require an extremely
careful choice of parameters in order to attain security: the parameters had to be redefined several
times as new attacks have been discovered. Therefore, we do not go into the details here but only
list them with some references.

« The Knapsack (subset sum) problem is to determine a subset of a given set of integers

such that the sum of the elements equals a given integer s. The corresponding decision
problem is to decide whether there exists such a sum leading to s.
Cryptosystems based on the knapsack problem [SAH 1975, IBKI 1975] were very well
received when they were created, because they were the first alternative to RSA. But
the fact that in a cryptosystem the hard problem should be easy to set up, implies
that not all types of subset-sum problems are suitable for cryptography. In particu-
lar, the first proposals using knapsacks of low density have been broken in polynomial
time [ODL 1990]. There exist some proposals that have not been broken so far but they
are hardly ever applied.

« The NTRU encryption [HOPIT 1998] and the NTRU-Sign [HOHO™ 2003] signature
system, see [NTRU], are systems based on the problem of recovering a sparse polyno-
mial that is a factor of a polynomial modulo X~ — 1 in the polynomial ring of some
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finite field ;. This problem can be transferred to the setting of lattices where Copper-
smith and Shamir [COSH 1997] showed that this problem can be reduced to a shortest
vector problem. Even though the latter is in general a hard problem, many instances of
it arising from NTRU systems have been proved easy to solve. Since the NTRU system
possesses a remarkable speed, there is a lot of interest in finding the parameters that
make it secure. An excellent survey on the subject is [GESM 2003].

In the last two decades, several public-key schemes based on the difficulty of solving
Multivariate Quadratic equations (MQ) have been proposed [MAIM 1988, PAT 1996,
KIPA" 1999, KIPAT 2003]. As it often happens, even though the general MQ problem
is NP-complete, many instances that have been proposed for designing cryptosystems
have been revealed solvable. In spite of the recent progress in Grobner bases computa-
tion [FAJO 2003] there are some signature schemes based on enhanced versions of the
hidden field equations (HFE) system [PAT 19g6] that are believed to be secure. It is still
an active area of research to devise provably secure variants of HFE cryptosystems.
McEliece proposed the first system based on algebraic coding theory [MCE 1978]. His
intent was to take advantage of the very efficient encoding and decoding algorithms
for the binary Goppa codes to propose a very fast asymmetric encryption scheme. The
security was related to the difficulty of decoding in a linear code [BEMcC™ 1978]: this
problem is NP-hard. In 1986 Niederreiter proposed a dual version [NIE 1986] of the
system, with an equivalent security [LIDE™ 1994]. A specialized version of the latter
based on Reed—Muller code was also proposed in 1994 [SID 1994]. The first digital
signature scheme using codes was presented in 2001 [COFI™ 2001].

Braid groups B,, are a special class of noncommutative groups. This allows us to
define the conjugacy problem, namely the problem of finding an a € B, for given
x,y € B, such that y = axa™'. The systems based on this problem [KOLE" 2000,
ANANT 1999] have been broken completely in [CHJU 2003] by showing a polynomial-
time algorithm to determine the secret information from the data made public for key
exchange and encryption.

Noncommutative groups still receive some interest, but at the moment we are not aware
of any proposed cryptoscheme.
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In the first part we state definitions and simple properties of the algebraic structures we shall use
constantly in the remainder of the book. More details can be found in [LAN 2002a].

The next section deals with number theory. We shall give at this occasion an introduction to
extension of fields, including the algebraic closure, Galois theory, and number fields. We refer
mainly to [LAN 2002a] and [FRTA 1991] for this part.

Finally, we conclude with an elementary theory of finite fields that are of crucial importance for
elliptic and hyperelliptic curve cryptography. Finite fields are extensively discussed in [LINI 1997].

2.1 Elementary algebraic structures

We shall recall here basic properties of groups, rings, fields, and vector spaces.

21.1 Groups

Definition 2.1 Given a set .S, a composition law x of S into itself is a mapping from the Cartesian
product S x S to S. Common notations for the image of (z, y) under this mapping are x X y, x.y
or simply zy. When the law is commutative, i.e., when the images of (z,y) and (y, z) under the
composition law are the same for all z, y € S, it is customary to denote it by +.

Definition 2.2 A group G is a set with a composition law x such that

19
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« X is associative, that is for all z,y, 2 € G we have (zy)z = x(yz2)
o X has a unit element e, i.e., for all z € G we have ze = ex = x
o forevery x € G there exists y, an inverse of = such that ry = yxr = e.

Remarks 2.3

(i) The group G is said to be commutative or abelian, if the composition law is commuta-
tive. As previously mentioned, the law is often denoted by + or & and the unit element
by 0 in this case.

(i) The unit of a group G is necessarily unique as well as the inverse of an element x that is
denoted by z—!. If G is commutative the inverse of x is usually denoted by —z.

(iii) The cardinality of a group G is also called its order. The group G is finite if its order is
finite.

Definition 2.4 Let G be a group. A subgroup H of G is a subset of G containing the unit element
e and such that

o forallz,y € H onehasxy € H
« ifz € Hthenalsoz~! € H.

Example 2.5 Let € G. The set {z" | n € Z} is the subgroup of G generated by x. It is denoted
by (z).

Definition 2.6 Let G be a group. An element z € G is of finite order if (x) is finite. In this case,
the order of x is |(x)], that is, the smallest positive integer n such that 2™ = e. Otherwise, x is of
infinite order.

Definition 2.7 A group G is cyclic if there is € G such that (x) = G. If such an element x exists,
it is called a generator of G.

Remark 2.8 Every subgroup of a cyclic group G is also cyclic. More precisely, if the order of G is
n, then for each divisor d of n, G contains exactly one cyclic subgroup of order d.

Definition 2.9 Let G be a group and H be a subgroup of G. For all z,y € G, the relation
x ~1y € H,ifandonlyif x—'y € H, respectively z ~ y if and only if yz~' € H, is an equivalence
relation. An equivalence class for this relation is denoted by zH = {xh | h € H}, respectively
Hx = {hx | h € H} and are called respectively left and right cosets of H. The numbers of classes
for both relations are the same. This invariant is called the index of H in G and is denoted by

G : H].

Theorem 2.10 (Lagrange) Let G be a finite group and H be a subgroup of G. Then the order of H
divides the order of G. As a consequence, the order of every element also divides the order of G.

Since all the classes modulo H have the same cardinality |H | and form a partition of G, we have
the more precise result |G| = [G : H||H|.

Definition 2.11 Let G be a group. A subgroup H is normal if for all z € G, xtH = Hz. In this
case G/ H can be endowed with a group structure such that (zH)(yH) = zyH.

For example, the group G = (Z, +) is abelian. Hence the group of multiples of n, called nZ is
a normal subgroup of G for every integer n, and one can consider the quotient group Z/nZ =
{z+nZ | x € Z}. Anelement of Z/nZ is a class modulo n. Two integers x and y are congruent
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modulo n if they belong to the same class modulo n, i.e., if and only if x — y € nZ. In this case, we
write x =y (mod n).

For every integer x, there is a unique integer r in the interval [0, n — 1], which belongs to the
class of x. This integer r is called the canonical representative of x and we write r = x mod n.
Therefore we have

Z/nZ = {r+nZ|rel0,n—1]}.

But other choices are possible. For example, to minimize the absolute value of the representatives,
we write 2 mods n for the unique integer in [|—n/2] + 1, |n/2]] congruent to z modulo 7.

Definition 2.12 Let G and G’ be two groups with respective laws x and ® and units e and €’.

« A group homomorphism ) between G and G’ is a map from G to G’ such that for all
z,y € G h(x x y) = p(x) @ P(y).
o The kernel of ¢ iskerp = {z € G | (x) =€'}.

Remark 2.13 The kernel of 1) is never empty as it is easy to see that ¢)(¢) = ¢’. In addition, ker ¢
is always a subgroup of G, which is in addition normal.

Definition 2.14 Let S be a set and G be a group. The group G acts on S if there is a map o from
G x S into S such that

« o(e,t) =t,forallt € S
« o(z,0(y,t)) = o(ay,t), forall t € S and forall z,y € G.

2.1.2 Rings
Definition 2.15 A ring R is a set together with two composition laws + and X such that

« R is a commutative group with respect to +
« X is associative and has a unit element 1, which is different from 0, the unit of +

o X is distributive over +, thatis forall z,y, 2 € R, x(y + 2z) = xy + xz and (y + 2)x =
yr + zx.

Remarks 2.16

(i) The ring R is said to be commutative, if the law x is commutative.

(i) A commutative ring R such that for all z,y € R, the equality zy = 0 implies that z = 0
or y = 0 is called an integral domain.

Example 2.17 The set Z of integers together with the usual addition and multiplication is a ring.
The set Z[X] of polynomials with coefficients in Z together with the addition and multiplication of
polynomials is a ring.

Definition 2.18 Let R and R’ be two rings with the respective operations +, x and @, ®. A ring
homomorphism % is an application from R to R’ such that forall z,y € R

« Y@ +y) =) ©P(y)

« Yz xy) =d(x) @P(y)

« (1) =1.

Definition 2.19 Let R be aring, [ is an ideal of R if it is a nonempty subset of R such that
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« [ is a subgroup of R with respect to the law +
o forallzx € Randally € I,zy € I and yx € 1.

The ideal I & R is prime if for all z,y € R with zy € I one obtainsx € [ ory € I.
The ideal I & R is maximal if for any ideal J of R the inclusion I C J implies J = [ or J = R.
Two ideals I and J of R are coprime if I +J = {i+j|i € Iandj € J}isequal to R.

Remark 2.20 It is easy to prove that a maximal ideal is also prime. The converse is not true in
general.

Definition 2.21 An ideal I of a ring R is finitely generated if there are elements aq, ..., a, such
that every « € I can be written © = x1a1 + - - - + xpa, With 2y, ..., 2, € R.

The ideal [ is principal if I = aR and R is a principal ideal domain (PID) if it is an integral
domain and if every ideal of R is principal.

Example 2.22 The integer ring Z and the polynomial ring K[X] where K is a field are principal
ideal domains.

Theorem 2.23 (Chinese remainder theorem) Let 1, ..., I} be pairwise coprime ideals of R.
Then
k k
R/ L =[] &/L
i=1 i=1
Corollary 2.24 Let nq,...,n; be pairwise coprime integers, i.e., such that ged(n;, nj) = 1 for

1 # j. Then, for any integers x;, there exists an integer x such that

x = x1 (mod ng)
x = x2 (mod no)
x = xz (mod ng).

k
Furthermore, x is unique modulo H n;.
i=1

Remark 2.25 See Algorithm 10.52 for an efficient method to compute = given the z;’s.

Next we define an important arithmetic invariant. Let R be a ring and let ¢ be the natural ring
homomorphism from Z to R. So

P(n) =

{ 1441 n timesifn >0 2.1)

—(1+---4+1) —n times otherwise.

The kernel of ¢ is an ideal of Z and if the multiples of 1 are all different then kervy = {0}.
Otherwise, for example if R is finite, some multiples of 1 must be zero. In other words, the kernel
of 1) is generated by a positive integer m.

Definition 2.26 Let R be a ring and ¢ defined as above. The kernel of ¢ is of the form mZ, for
some nonnegative integer m, which is called the characteristic of R and is denoted by char(R).

Remark 2.27 In a commutative ring R of prime characteristic p, the binomial formula simplifies to

(a+ 5)7’“ =a”" + 37" foralla,B € Randn € N. 2.2)
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Definition 2.28 Let R be aring. An element z € R is said to be invertible if there is an element y
satisfying xy = yx = 1. Such an inverse y, also called a unit, is necessarily unique and is denoted
by x~1. The set of all the invertible elements is a group under multiplication denoted by R*.

Example 2.29 Take a positive integer N and consider the ring Z/NZ obtained as the quotient of
the usual integer ring Z by the ideal NZ. The invertible elements of Z/NZ are in one-to-one
correspondence with the canonical representatives coprime with N. The inverse of an element is
given by an extended gcd computation, cf. Section 10.6.

Definition 2.30 Let N > 1 and let us denote |(Z/NZ)*| by ¢(N). The function ¢ is called the
Euler totient function and one has o(N) = [{z | 1 <z < N, ged(z, N) = 1}/

From Lagrange’s Theorem 2.10, it is easy to prove the following.

Theorem 2.31 (Euler) Let /V and x be integers such that x is coprime to N, then
2#WN) =1 (mod N).

This result was first proved by Fermat when the modulus N is a prime p. In this case, Theorem 2.31
reduces to 2P~ = 1 (mod p) for x prime to p. Therefore this restricted version if often referred to
as Fermat’s little theorem.

The ring Z/pZ has many other marvelous properties. In particular, every nonzero element has an
inverse, which means that Z/pZ is a field.

2.1.3 Fields

Definition 2.32 A field K is a commutative ring such that every nonzero element is invertible.

Example 2.33 The set of rational numbers Q with the usual addition and multiplication law is a
field. The quotient set Z/pZ with the induced integer addition and multiplication is also a field for
any prime number p.

An easy consequence of Definition 2.32 is that a field is an integral domain. Now, quotienting K
by the kernel of v as defined by (2.1), we see that K contains a field isomorphic to Z/ char(K)Z.
These two facts imply the following result.

Proposition 2.34 The characteristic of a field is either 0 or a prime number p.

As a corollary, a field K contains a subfield which is isomorphic to Q or Z/pZ.

Given an integral domain R, a common way to obtain a field is to add to R the formal inverses
of all the elements of R. The set obtained is the field of fractions of R. For instance, K (X)) is the
field of fractions of the polynomial ring K'[X]. Next proposition is also very much used in practice
to construct fields.

Proposition 2.35 Let R be a ring and I an ideal of R. Then the quotient set R/I is a field if and
only if I is maximal.

Definition 2.36 Let K and L be fields. A homomorphism of fields is a ring homomorphism between
K and L.

We remark that a homomorphism of fields is always injective, for it is immediate that its kernel is
reduced to {0}.
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2.1.4 Vector spaces
In the remainder of this part, K will denote a field.

Definition 2.37 A vector space V over K is an abelian group for a first operation denoted by +,
together with a scalar multiplication from K x V into V, which sends (A, z) on Az and such that
forall z,y € V, forall A\, u € K we have

e Mz +y)=Ax+\y
e AN+ p)zx =M+ px
« (An)x = A(ux)

e lo =u.

An element x of V' is a vector whereas an element \ of K is called a scalar.

Definition 2.38 A K -basis of a vector space V' is a subset S C V which

o is linearly independent over K, i.e., for any finite subset {z1,...,2,} C S and any
A1y ..., An € K, one has that

n
Z Aix; = 0 implies that \; = 0 for all ¢
i=1
o generates V over K, i.e., for all x € V there exist finitely many vectors x1, ..., x, and
scalars \q,..., A\, such that
n
xr = Z )\le
i=1

Theorem 2.39 Let I be a vector space over K. If V' is different from {0} then V" has a K-basis.

Definition 2.40 Two bases of a vector space V' over K have the same cardinality. This invariant is
called the K -dimension of V or simply the dimension of V. Note that the dimension is allowed to
be infinite.

Example 2.41 The set of complex numbers C together with the usual addition and coefficient wise
multiplication with elements of R is a vector space over R of dimension 2. A real basis is for
instance {1,4}.

Example 2.42 The set K [X] of polynomials in one variable over a field K is an infinite dimensional
vector space with the usual addition of polynomials and multiplications with elements from K. A
basis is given by {1, X, X?,..., X", ...}

Remark 2.43 When the field K is replaced by a ring R, the axioms of Definition 2.37 give rise to a
module over the ring R.

2.2 Introduction to number theory

We refer to Section 2.1 for an elementary presentation of groups, rings, and fields. More details can
be found in [LAN 2002a].

In this section, we review the construction of an extension of a field K by formally adding some
elements to it. Then we describe some properties of algebraic extensions of fields in order to be able
to state the main result of Galois theory. We conclude with a brief presentation of number fields.
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2.2.1 Extension of fields

Definition 2.44 Let K and L be fields, we say that L is an extension field of K if there exists a field
homomorphism from K into L. Such an extension field is denoted by L/ K.

Remark 2.45 As said before, a field homomorphism is always injective, so we shall identify K
with the corresponding subfield of L when considering L/ K.

Example 2.46 Let R be the field of real numbers with usual addition and multiplication. Obviously,
R is an extension of Q. Now, let us describe a less trivial example. Consider the element V2eR
and the subset of R of the elements of the form a + v/2b with a,b € Q. If we put for a + v/2b and
a/ + \/ib/

(a+V2b)+ (a +V2b) =a+d +V2(b+V)

and
(a +V2b) x (a’ +V2b') = ad’ + 200" + V2(ab’ + a'b),

it is easy to see that we obtain a field denoted by Q(+/2), which is an extension of Q.

Definition 2.47 Let L and L' be two extension fields of K and ¢ a field isomorphism from L to L'.
One says that o is a K -isomorphism if o(z) = z forall z € K.

Definition 2.48 Let L/ K be a field extension then L can be considered as a K -vector space. The
dimension of L/ K is called the degree of L/ K denoted by [L : K] or deg(L/K). If the degree of
L/K is finite then we say that the extension L/ K is finite.

The following result is straightforward.
Proposition 2.49 Let K C L C F be a tower of extension fields then
deg(F/K) = deg(F/L)deg(L/K).

Now, let L/K be a field extension and let x be an element of L. There is a unique ring homomor-
phism ¢ : K[X] — L such that ¢)(X) = z and for all z € K, ¢)(z) = z. We can consider the
kernel of this homomorphism which is either {0} or a maximal ideal I of K [X].

Definition 2.50 Suppose that I as defined above is nonzero. As K [X] is a principal ideal domain,
there exists a unique monic irreducible polynomial

m(X) =X+ ag 1 X+ +ag

such that I = m(X)K[X]. We say that  is an algebraic element of L of degree d and that m(X)
is the minimal polynomial of x.

Quotienting by ker ¢/, one sees that ¢ gives rise to a field inclusion ¢ of K'[X]/(m(X)K[X]) into
L. Let K[z] = {f(z) | f(X) € K[X]} be the image of ¢ in L. It is an extension field of K and
the monic polynomial m (X)) is an invariant of the extension: in fact, if there exists y € L such that
K[z] ~ K[y] then by construction z and y have the same minimal polynomials.

Definition 2.51 If every element of L is algebraic over K, we say that L is an algebraic extension
of K.
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It is easy to see that K [z]/K is a finite extension and d = deg(m) is equal to its degree: in fact ¢
gives a bijective map from the K -vector space of polynomials with coefficients in K of degree less
than d to K [x]. This bijection 1) is called a polynomial representation of K[z]/K.

Not all algebraic extensions are finite, but a finite extension is always algebraic, and if L/K is
a finite extension then there exists a finite sequence of elements x1,...,2, € L such that L =
Klxy,...,2,]. If L = K[x] we say that L is a monogenic extension of K.

Definition 2.52 Let L /K be a finite algebraic extension and let # € L. The application of right
multiplication by  from L to L considered as a K -vector space is linear. The trace and the norm of
this endomorphism of L are called respectively the trace and norm of = and denoted by Tr i ()
and N,/ (). We use the notations Tr(z) and N(x) when no confusion is likely to arise.

If x is a generating element of L/ K with minimal polynomial m(X) = X%+ays_ 1 X% 1+ - +aqg
then Tr(z) = —aq_1 and N(z) = (—1)%aq.

The trace and norm are both maps of L to K. We have the basic properties:

Lemma 2.53 Let L /K be a degree d finite algebraic extension. For 2,y € L and a € K we have

Tr(z+y) = Tr(z)+Tr(y), N(zy) = N(z)N(y)
Tr(a) = da, N(@) = a
Tr(ax) = aTr(z), N(z)=0 = x=0.

Let K C L C F be atower of finite algebraic extensions, let x be an element of F’ then

TI'F/K({E) = TrL/K (TI'F/L(I')) and NF/K(I') = NL/K (NF/L(x)) .
When =z is not a root of any polynomial equation with coefficients in K" one needs a new notion.

Definition 2.54 If the kernel of ¢ is equal to {0} we say that x is a transcendental element of L. If
every element of L is transcendental over K, we say that L is a pure transcendental extension over
K. More generally, if there exists an element of L which is not algebraic over K, then L/K is a
transcendental extension of K.

In this case, one can extend ¢ to an inclusion {bv of the fraction field K (X) into L by setting
¥(1/X) =1/x. Let K(x) be the image of ¢ in L. If L is not an algebraic extension over K (x)
then putting 1 = x we can find x9, a transcendental element of L /K (x1) which is not in K (x1),
and build in the same way an inclusion of K (X7, X2) into L. Iterating this process we can find

n € N U {oo} the maximum number such that K (x1,...,z,) is a subfield of L isomorphic to
K(X4,...,X,). It can be shown that n is independent of the sequence of transcendental elements
x1i,...,x, of L over K chosen.

Definition 2.55 The number n defined above is called the transcendence degree of L over K.

It is quite clear from the previous discussion that every extension ' — L can be written as the
composition K — Kiyans — Ky Where Ky is a pure transcendental extension of K and Ky is
an algebraic extension over Kys.

Example 2.56 Let Q(X) be the field of rational functions over Q; then obviously Q(X)/Q is a
pure transcendental extension of Q of transcendence degree equal to 1. Now let Q be the algebraic

closure of Q, then by definition Q/Q is an algebraic extension but it is not a finite extension. Finally
Q(X,+/2)/Q s a transcendental extension that can be written as Q — Q(X) — Q(X,/2).
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2.2.2 Algebraic closure

Let K be a field and consider a monogenic algebraic extension K [z] of K defined by a polynomial
m(X) irreducible over K. The polynomial m(X') can be written as a product [ m;(X) of irre-
ducible polynomials over K [x]. As by construction z is a root of m(X) in K[z] then (X — ) is an
irreducible factor of m(X) and as a consequence for each i, degm; < degm. If the m;(X)’s are
all of degree 1 then we say that m(X) splits completely in K [x].

If m(X') does not split completely over K [z] then there exists m;, (X ), an irreducible polynomial
of degree greater than or equal to 2 and we can consider the extension K[z, y] over K [z] defined
by m;, (X). Repeating this process, one can build recursively an extension field over which m(X)
splits completely.

Definition 2.57 The smallest extension of K over which m(X') completely splits is called the split-
ting field of m(X). It is unique up to a K -isomorphism.

It is well known that every polynomial with coefficients in R splits completely in C. More generally,
if K is a field, we would like to consider a maximal algebraic extension of K in which every alge-
braic extension of K could be embedded. Such an extension has the property that every polynomial
of K[X] splits completely in K. The following theorem [STE 1910] asserts its existence.

Theorem 2.58 (Steinitz) There exists a unique algebraic extension of K in which every polynomial
m(X) € K[X] splits completely. This extension called the algebraic closure of K and denoted by
K is unique up to a K -isomorphism.

Next, we review some basic properties of algebraic extensions in order to state the main theorem of
Galois theory.

2.2.3 Galois theory

For most parts of the book we consider finite algebraic extension fields. Therefore we restrict the
discussion of Galois theory to this important case.

Definition 2.59 An extension L over K is said to be normal if every irreducible polynomial over
K that has aroot in L splits completely in L.

As an immediate consequence every field automorphism of L fixing K leaves L invariant. Let K
be a field, K its algebraic closure, o an embedding of K into K and for x € K, K[z] an algebraic
monogenic extension of K defined by a polynomial m(X) of degree d. Let z = x1,x2...,25 be
the different roots of m(X) in K. Then fori = 1,...,s, it is possible to define the unique field
inclusion o; of K [z] into K imposing that the restriction of o; on K is ¢ and o;(z) = x;. The 0;’s
are all the inclusion homomorphisms of K[x] in K, the restriction of which is given by o on K.
We remark that s is always less than or equal to d, the degree of K [x]/K. This integer s is called
the degree of separability of K'[z1] over K or the degree of separability of 1. More generally, we
have:

Definition 2.60 Let L be a finite algebraic extension of K, K be the algebraic closure of K and o
an inclusion of K into K. Then the degree of separability of L over K denoted by deg,(L/K) is
the number s of different field inclusions ¢;, ¢ = 1,...,s of L into K restricting to o over K. If
deg,(L/K) = deg(L/K), we say that L/ K is separable.

If v € L, the elements o;(z) € K are called the conjugates of x.

An immediate consequence of the definition and the preceding discussion is:
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Lemma 2.61 A monogenic algebraic extension K[z]| defined by a minimal polynomial m(X) is
separable if and only if m (X)) is prime to its derivative m’(X).

Concerning the composition of degree of separability we have

Proposition 2.62 Let L/ K and F'/ K be a tower of extension fields, then
deg,(F/K) = deg,(F/L) deg,(L/K).
We have the basic fact

Fact2.63 Let F//L and L/K be field extensions and let z € F be separable over K; then it is
separable over L.

From the previous proposition, we deduce that an algebraic finite extension is separable if and
only if it can be written as the composition of monogenic separable extensions. From this and the
preceding fact, we can state

Proposition 2.64 A finite algebraic extension L/K is separable if and only if every x € L is
separable over K.

Then the criterion of Proposition 2.61 tells us that every algebraic extension over a field of charac-
teristic 0 is separable. We have the following definition

Definition 2.65 A field over which every algebraic extension is separable is called a perfect field.

A field is perfect if and only if every irreducible polynomial is prime to its derivative. We saw that
every field of characteristic zero is perfect. More generally, we have

Proposition 2.66 A field K is a perfect field if and only if one the the following conditions is
realized

o char(K) =0,
o char(K)=p and K? = K.

As a consequence of this proposition, we shall see that every finite field is perfect. The following
theorem shows that every finite algebraic separable extension is in fact monogenic.

Theorem 2.67 If L/ K is a separable finite algebraic extension of K then L/K is monogenic, i.e.,
there exists « € L such that L = K [x] and x is called a defining element.

Definition 2.68 An extension L/K is a Galois extension if it is normal and separable. We define
the Galois group of L over K denoted by G,/ or Gal(L/K) to be the group of /K -automorphisms
of L. There is a natural action of G,/ on L defined for g € G,/ and x € L by g-z = g(x). By
its very definition, this action leaves the elements of K invariant.

If H is a subgroup of G, we denote by L the set of elements of L invariant under the action of
H. Ttis easy to see that L is a subfield of L. Moreover, L*! is a Galois extension of K if and only
if H is a normal subgroup of G.

Obviously, the separability condition of Galois extensions implies that the order of the Galois group
of L/K is equal to the degree of this extension. Then, we have the following result, which is the
starting point of Galois theory

Theorem 2.69 Let L/ K be a finite Galois extension. Then there is a one-to-one correspondence
between the set of subfields of L containing K and the subgroups of G, x. To a subgroup H of
G'1/ K this correspondence associates the field LT,
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2.2.4 Number fields

Definition 2.70 A number field K is an algebraic extension of Q of finite degree. An element of K
is called an algebraic number.

Remarks 2.71

(i) There are number fields of any degree d, since, for instance, the polynomial X — 2 is
irreducible over QQ for every positive integer d.

(i) As a consequence of Theorem 2.67, for every number field K, there is an algebraic
number 6 € K such that K = Q(6).

(iii) The degree d of K/Q is equal to the number of field homomorphisms o; from K to C.
Thus if K = Q(0), the degree d is equal to the number of conjugates o;(6) of 6 and
corresponds to the degree of the minimal polynomial of 6.

Definition 2.72 Let 1) be a homomorphism from K to C. If the image of # is in fact included in R
then ¢ is a real homomorphism. Otherwise v is called a complex homomorphism.

Definition 2.73 The numbers of real and complex homomorphisms of K/Q, respectively denoted
by 1 and 29, satisfy d = rq + 2r5. If ro = 0 then K/Q is said to be totally real. In case 1 = 0
then K /Q is rotally complex. The ordered pair (ry,r2) is called the signature of K/Q.

Fact 2.74 It is clear that a Galois extension must be totally real or totally complex.

Remark 2.75 The signature of K/Q can be found easily. Let us write K = Q(#) and let m(X)
be the minimal polynomial of 8. Then r; and 2r5 are respectively the numbers of real and nonreal
roots of m(X).

Example 2.76 The signature of the totally real field Q(1/2) of degree 2 is (2, 0).
The extension Q(i) generated by X2 + 1 is totally complex and its signature is (0, 1).
The signature of Q(6) where 6 is the unique real root of the polynomial X3 — X — 11is (1,1).

Proposition 2.77 Let K/Q be a number field of degree d, let o1,...,04 be the field homomor-
phisms of K to C and let  be an algebraic number in K. Following Definition 2.52, the trace and
norm of « are explicitly given by

d d
Trg q(a) = Zoi(a) and Ng/g(a) = Hai(a).

Definition 2.78 Let K/Q be a number field. An algebraic number « is called integral over Z or an
algebraic integer if o is a zero of a monic polynomial with coefficients in Z.

The set of all the algebraic integers of K under the addition and the multiplication of K is a ring,
called the integer ring of K and is denoted by O

Remarks 2.79

(i) If K = Q(0) is of degree d then the ring O is a Z-module having an integral basis,
that is a set of integral elements {1, ..., a4} such that every o € Ok can be written as

a=aiaq + -+ aqgag for some a; € Z.

(i) The ring Z[0] = {f(9) | f(X) € Z][X]} is a subring of Ok. In general it is different
from O
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Example 2.80 Let o be an algebraic integer such that o> = n with n € Z different from 0, 1, and
squarefree. Then Ok is explicitly determined.

« Ifn=1 (mod 4) then O = Z[1E£2].
o If n=2,3 (mod 4) then O = Z|a].

Definition 2.81 Let K be a number field of degree d. An order of K is a subring of O of finite
index which contains an integral basis of length d. The ring Ok is itself an order known as the
maximal order of K.

Theorem 2.82 The ring Ok is a Dedekind ring, in other words

o itis Noetherian, i.e., every ideal a of O is finitely generated

o itis integrally closed, that is, the set of all the roots of polynomials with coefficients in
O is equal to O itself
« every nonzero prime ideal is maximal in Ok

In a Dedekind ring, an element has not necessarily a unique factorization. For instance, in the field
Q(i+/5) the ring of integers is Z[zx/g] and one has

21 = 3x7
(14 2iv5)(1 — 2iV5).

However, if we consider ideals instead, we have unique factorization. First, we define the product
of two ideals a and b by
ab = {Zaibi | a; € a,bi S b}
i

Theorem 2.83 Let O be a Dedekind ring and a be an ideal of O different from (0) and (1). Then a
admits a factorization

a=pi...pr

where the p;’s are nonzero prime ideals. The factorization is unique up to the order of the factors.

Definition 2.84 Let K be a number field and let an order O be a Dedekind ring. A fractional ideal
of K is a submodule of K over O.

Remark 2.85 An O-submodule a is a fractional ideal of K if and only if there exists ¢ € O such
that ca C O.

The fractional ideals form a group Jx under the product defined above and the inverse of a fractional
ideal a in J is the fractional ideal

al={recK|zac O}

The fractional principal ideals, i.e., fractional ideals of the form aO for a € K* form a subgroup
P, K of J K-

Definition 2.86 Let K be a field. The class group of Ok is the quotient group Clx = Jx /Pk.

Theorem 2.87 For any number field K, the class group Clx is a finite abelian group. Its cardinality,
called the class number is denoted by h(K).



§ 2.3 Finite fields 31

Theorem 2.88 Let K/Q be a number field whose signature is (s, t), let O be its integer ring and
let r = s + ¢t — 1. Then there are units €¢, €1, . . ., & such that

« the unit &¢ is of finite order w(K) and generates the group of roots of unity in K
« every unit e € OJ; can be written in a unique way as

€= H gt
o<igr
with0 < np < w(K)andn; € Zforl <i < r.

A family (e1,...,¢&,) as above is called a basis of fundamental units.

Definition 2.89 Let K/Q be a number field of degree d let p be a prime integer. Then the ideal
decomposition of pOf is of the form

g
pOk = pr with e; > 1.
i=1

The ideals p; are above the ideal pZ. We say that
o pis ramified in K if there is 7 such that e; > 1. The corresponding ideal p; is said to be

ramified as well.

« psplits in K if pOg is the product of distinct prime ideals. In this case g = dand e; = 1
for all 1.

o pisinertin K, if pOk is again a prime ideal, i.e.,g = 1l and e; = 1.

2.3 Finite fields

Finite fields are central objects in cryptography, because they enjoy very special properties. For
instance, their multiplicative group is cyclic and their Galois structure is remarkably simple. Initially
they were the core of cryptosystems such as ElGamal’s which relies on the difficulty to solve the
discrete logarithm problem in the group of units of a well chosen finite field. For our purpose they
serve as elementary blocks since elliptic and hyperelliptic curves used in cryptography are always
defined over finite fields. We refer mainly to [LINI 1997] for this section.

2.3.1 First properties

Definition 2.90 A finite field is a field whose order is finite. Finite fields are also referred to as
Galois fields.

Let K be a finite field. From Proposition 2.34, we know that the characteristic of K is necessarily
a prime number p, since otherwise K would be of characteristic 0 and would contain Q. The
cardinality of K is precisely determined as well. Indeed, if we factorize ¢/ as defined by (2.1), we
see that K contains a subfield we shall identify with Z/pZ. This implies that it is a Z/pZ-vector
space of finite dimension d. In particular, the order of K is equal to p?. The following theorem
classifies all the finite fields.

Theorem 2.91 For any prime p and any positive integer d there exists a finite field with ¢ = p?
elements. This field is unique up to isomorphism and is denoted by I, or GF(q).
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This result can be proved using the uniqueness of the splitting field of X P — X in the algebraic
closure of Z/pZ.

Definition 2.92 A finite field that does not contain any proper subfield is called a prime field.

It is clear that IF}, is the only prime field of characteristic p. More generally, there is a bijection
between the subfields of F .« and the divisors of d since

Fpe C F,a if and only if ¢ | d.
Asa consequence
del n dez = Fpgcd(dl,dz) and del .dez = ]Fplcm(dl,dz).

The multiplicative group of nonzero elements of F, is, as usual, denoted by Fy. Lagrange’s theorem
shows that
a7t =1 forevery a € Fy-

This generalizes Fermat’s theorem and has many important consequences. For example, it implies
that no finite field is algebraically closed. Indeed the polynomial X7 — X + 1 € F,[X] has no roots
in IF,. Using the property that a polynomial of degree n with coefficients in F, has at most n roots
in IF, one can show the following.

Theorem 2.93 Let I, be a finite field. The group F is cyclic.
A generator y of 7, i.e., an element such that F; = (v), is called a primitive element.

Remark 2.94 1t is easy to see that there are ¢(q — 1) primitive elements, where ¢ is the Euler’s
totient function, as given in Definition 2.30. More generally, if ¢ | ¢ — 1 then there are exactly
¢(e) elements of order e in ;. Note also that the map f(a) = a is a bijection if and only if
ged(e, g — 1) = 1.

Finite fields do have transcendental extensions. For example F,(X) is an extension field of F,,
which is not algebraic over IF,. However, in the remainder we shall only describe algebraic exten-
sions of a finite field.

2.3.2 Algebraic extensions of a finite field

There are algebraic extensions of I, of infinite degree, the first example being F,, the algebraic
closure of F,. Concerning finite extensions, the field IF, being perfect, see Definition 2.65 and
Proposition 2.66, this implies that F . /I, can always be written I, (6) where 6 is algebraic of
degree k over Iy, cf. Theorem 2.67.

The polynomial representation of an extension of [F, gives a practical way to construct F .
Since there is a unique finite field of cardinality ¢, it is sufficient to find a polynomial of degree %
irreducible over F,,.

Gaul established the equality

x" - x=1] I[ Px) 2.3)

jlk P€EZ,

where Z; is the set of all the irreducible monic polynomials of degree j in F,[X]. It follows that the
number of monic irreducible polynomials of degree k over IF, is given by the formula

1 .
=D ni)g"? 24

Jilk
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where 1 is the Mobius function. As a consequence, there is at least one irreducible polynomial of
degree k over F, forall k > 1.

Relation (2.2) shows that the map that sends « to o is an automorphism of any field of charac-
teristic p. Furthermore o = o for every o € F,,.

Definition 2.95 Let o € F ». The map ¢, which sends « to o®, is a F,-automorphism called the
absolute Frobenius automorphism of I ... More generally, the application

g Fge — Fgr
a — o
is an [F;-automorphism of F » called the relative Frobenius automorphism of F x /F .
The following important result was proved by Galois.

Theorem 2.96 Every finite extension F« /I, is Galois and Gal(FF» /F,) is a cyclic group of order
k generated by ¢,.

If m(X) € Fy[X] is an irreducible polynomial of degree k then it splits completely in F«. If v is a
root of m(X) in F«, one sees by direct calculation that the conjugates of « are the distinct elements
a, o ozqz, ool . of F . In case o € [Fx is not of degree k, the conjugates of « are no longer
distinct since a4’ = a, for some j dividing k In any case, we have the following result similar to
Proposition 2.77.

Proposition 2.97 Let o € F . The trace and the norm of « are given by the formulas

TI']F k/F Zoﬂ and N]F k/]F Haq.
i=1

2.3.3 Finite field representations

In Section 2.3.1, we have seen that the multiplicative group of a finite field is cyclic. This allows
us to easily describe the multiplication in . Likewise, considering F; as a vector space over its
prime field IF,, with respect to some basis allows us to add efficiently in IF,. However, the interplay
between these structures needs to be investigated.

The notion of Zech’s logarithm can be used for prime fields as well as for extension fields. It
relies on the multiplicative structure of ;. Let  be a primitive element of Fy. For @ = " put
log., a = n, the discrete logarithm of « to the base of «, where n is defined modulo ¢ — 1 and
log., 0 = oc. This representation is well adapted to products since

10g7 ap0g = log7 a1 + 10g7 Qg =Ny + no,

but computing log, (o1 +az) = n1 log, (1+~™27"1) is not straightforward. For n € N, one defines
Zech’s logarithm Z(n) of 4™ to be the discrete logarithm of 1 + 4", namely

14+ ,_yn _ ,YZ(n).
Note that Z(0) = oo if ¢ is even and Z((q — 1)/2) = oo if ¢ is odd. In practice, we have to
precompute Zech’s logarithm of each element of the field. So this representation is only useful for
fields of small order.

Concerning prime fields, an element of [F,, is usually represented by an integer between 0 and
p— 1 and computations are done modulo p. More details and efficiency considerations can be found
in Section 11.1.1.
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Concerning extension fields, elements of F,» are represented using the IF,-vector space structure
with respect to some basis. Additions are performed coefficient wise. However, to multiply one
needs to know about the dependencies between the elements of this basis. For an efficiency focused
discussion, we refer to Section 11.2.1. The following two bases are the most common ones.

2.3.3.a Polynomial representation

An element o € Fgx can be represented as a polynomial with coefficients in I, modulo an irre-
ducible polynomial m(X) € F,[X] of degree k. If 6 is a root of m(X) then {1,6,62,... 61}
is a basis of Fx over IF,. Such a basis is called a polynomial basis; see Section 11.2.2.a. Note that
one deduces from (2.4) that there are approximately ¢* /k irreducible monic polynomials of degree
kin F,[X]. Addition, subtraction, and multiplication are made modulo m(X). Usually, inversion
is obtained with an extended gcd computation in F,[X]. As the field polynomial m(X) is irre-
ducible and the polynomial a(X) representing the field element « is of degree less than k, one can
find a polynomials u(X) and v(X) of degree less than k such that a(X )u(X) + m(X)v(X) = 1.
Accordingly, u(X) = a(z)~! mod m(X). In some cases we can also use the identity a?’ =1.

Any irreducible polynomial of degree & can be used to define IF ;+ but in practice polynomials with
special properties are chosen. One one hand, it can be useful to consider an irreducible polynomial
having a primitive element, that is a generator of F*,, among its roots. Such a polynomial is called
a primitive polynomial and there are exactly ¢(g* — 1)/k monic primitive polynomials of degree
k in F,[X]. On the other hand, a sparse polynomial, that is a polynomial with only a few nonzero
coefficients, allows a fast reduction; see Algorithm 11.31. So irreducible binomials, trinomials,
and pentanomials are commonly used to define extensions of a finite field, cf. Section 11.2.1.a and
Definition 11.60. Some polynomials enjoy these two properties, e.g., the trinomial X 67 4 X6 + 1
in Fo[X] is both primitive and sparse.

Finally, note that in some cases it can be more efficient to use a reducible polynomial, that is to
embed the field F» into a ring where the computations are done. This variant gives a so-called
redundant polynomial basis. The representation of a field element is no longer unique but the
reduction can be cheaper, see Section 11.2.1.b.

2.3.3.b Normal basis representation

Definition 2.98 The element o € [« is said to be normal over F if o, af,. . ., a? ™" are linearly
independent over F,. In this case {a, ¢¢(c), ..., ¢5 ()} is a basis of Fyx /F, which is called a
normal basis of F g over .

The element « is normal if and only if
ged(X* — 1,aX* ™ 4 ¢y (@) X* 2 4+ + ¢E (@)X + ¢ (@) = 1.

Hensel proved that there always exists a normal basis of F,» over F,. For 3 € F x, the computation
of (37 is very easy with this representation since it is simply a cyclic shift of the coordinates of (3
represented with respect to {c, ¢q(c), ..., ¢F ! ()}. This is especially interesting when ¢ = 2
because, then in the usual exponentiation using square and multiply, the squarings can simply be
replaced by these far less expensive shiftings. Multiplying two elements is more painful and requires
precomputing a table, cf. Section 11.2.2.b. To actually build a normal basis, Gauf3 periods are very
convenient.

Proposition 2.99 Let r = kn + 1 be a prime number, let IC be the unique subgroup of order n of
(Z/rZ)* and ¢ be a primitive r-th root of unity. Then the Gauf3 period of type (n, k)

a:ZQ“

aclkl
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generates a normal basis (a, al, ..., oﬂkil) of IF» over Iy if and only if kn /e is prime to k, where
e is the order of ¢ in (Z/rZ)*. For ¢ = 2¢ and a given k this holds true for some n € N if and only
if gcd(k,d) = 1 and 8 1 k, [GAO 2001]. For ¢ = 2, the obtained normal basis is called a Gaussian
normal basis of type n and leads to optimal normal basis when n = 1 or 2, cf. Section 11.2.1.c.

There is also a definition of general GauB periods of type (k, K) for any integer » [FEGA™ 1999,
NOC 2001]. In this case K is an explicit subgroup of (Z/rZ)* of order n with p(r) = kn.
Let r = pi*...p;* where the p;’s are prime and p; # p; for i # j. We denote by ¢, a

primitive r-th root of unity and let » = ;72 where r; is the squarefree part of r, i.e., 7 = p;y ... p;.

Definition 2.100 With these settings, the general Gaufs period of type (k, K) is

a=3 (eI 3 ™).

aclkl pilre 1<s<y;

Now this element « is normal in F . /F, if and only if (¢, K) = (Z/rZ)* [FEGA™ 1999].
See [SHP 1999, Section 4.1] for more details on normal bases and Section 11.2.2.b for efficiency
considerations.

2.3.3.c Dual basis representation

Two bases {1, ...,ax} and {B1,..., Bk} of Fyr /Fy are dual or complementary with respect to
the trace if Tr(a;/3;) = d;;, where d;; is Kronecker’s symbol. The dual basis of {av, ..., o} is
uniquely determined.

The use of dual bases leads to very efficient hardware implementation [BER 1982, OMMA 1986]
to multiply an element « expressed with respect to some basis by § expressed with respect to its
dual basis. The result is obtained in dual coordinates.

As several bases are used one needs efficient conversion techniques to change bases. To overcome
this difficulty, one can use a self-dual basis, i.e., a basis equal to its own dual basis. The field F
has a self-dual basis over I, if and only if ¢ is even or both g and % are odd [SELE 1980].

In some very particular and interesting cases a self-dual basis is also normal. Such a basis is tradi-
tionally called a self-complementary normal basis and it exists [BLGA™ 1994b] in every extension
of IFx /Fy where

« qiseven and k is not a multiple of 4, or

« ¢ and k are both odd.
Jungnickel et al. [JUME™ 1990] determined the total number of self-dual and self-complementary
normal bases of F» over F,, but their proof is not constructive. In [GAGA™ 2000], it is proved that
a normal basis generated by a Gauf period of type (k,n) with k& > 2 is self-dual if and only if n is
even and divisible by the characteristic of IF,,. See also [BLGA™ 1994b] for an explicit construction
in one of the following cases:

« kis equal to the characteristic of IV, or

e k| (¢—1)andk is odd, or

e k| (¢+1)andFk is odd.

2.3.4 Finite field characters
Definition 2.101 A character of the finite field F; is a group homomorphism from [} into C*.

In this part, we assume that the characteristic of I, is an odd prime number p and we shall only de-
scribe two examples of characters, namely the Legendre symbol, and its generalization to extension
fields, the Legendre—Kronecker—Jacobi symbol.



36 Ch. 2 Algebraic Background

2.3.4.a The Legendre symbol
Take an integer a and let us consider the equation
2 =a (mod p). (2.5)

Ifa =0 (mod p) then z = 01is the only solution. When a # 0 (mod p), a is said to be a quadratic
nonresidue if equation (2.5) has no solution. Otherwise, there are two solutions and a is a quadratic
residue. Obviously, there are (p — 1)/2 quadratic residues in F,, and the same number of quadratic
nonresidues.

Definition 2.102 The Legendre symbol (%) is precisely the number of solutions of the above equa-
tion minus 1. Namely

—1 if a is a quadratic nonresidue

(2) =< 0 ifa=0(mod p)

1 if a is a quadratic residue.

Theorem 2.103 The Legendre symbol satisfies the following properties

<9> = a® /2 (mod p)
5) = G)6)
)

= (—1)@* -0/,
If p and g are both odd primes then one has the quadratic reciprocity law

<§> <]€)) _ (—1)P-Da-D/4, 2.6)

The Legendre symbol can be extended to the Kronecker—Jacobi symbol ( %) where a,b € Z. We
shall only use it when b = [ [, p;* is odd. Its main feature is

(5 - (%)

With these settings the reciprocity law (2.6) can be extended to any odd integers p and ¢ and leads
to an efficient method to compute the Legendre symbol, cf. Algorithm 11.19.

INES

2.3.4.b The Legendre—Kronecker-Jacobi symbol

The case of extension fields of odd characteristic is very similar to prime fields of odd characteristic.
Let m(X) be an irreducible polynomial of degree d such that F,,[X]/(m(X)) is isomorphic to F.
There is a generalization of the Legendre symbol for an element f(X) € F,[X] denoted by

()
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which is equal to 0 if m(X) | f(X), 1if f(X) is a nonzero square mod m(X) and —1 if it is
not a square mod m(X). The Legendre symbol can be extended to the Kronecker—Jacobi symbol
when m(X) is not irreducible. This is useful because of an analogue of the reciprocity law (2.6)
independently discovered by Kiihne [KUH 1902], Schmidt [SCH 1927], and Carlitz [CAR 1932].

Theorem 2.104 Let f(X ) and m(X ) be monic polynomials of F,,[X]. Then

(M) if g =1 (mod 4) orif degm(X) or deg f(X) is even

f(X )) %)
_ 2.7
(m(X ) — (%) otherwise.

Algorithm 11.69 makes use of the law (2.7) to compute the Legendre—Kronecker—Jacobi symbol.
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The p-adic numbers play an important role in algebraic number theory. Many of the fruitful prop-
erties they enjoy stem from Hensel’s lemma that allows one to lift the modulo p factorization of a
polynomial. As a consequence, although Q,, is a characteristic zero field, its absolutely unramified
extensions reflect the same structure as the algebraic extensions of the finite field IF,. On the other
hand, the completion of the algebraic closure of ,, can be embedded as a field, but not as a val-
uation field, into C. Consequently, p-adic numbers are used to bridge the gap between finite field
algebraic geometry and complex algebraic geometry by the use of the so-called Lefschetz principle.

In this chapter, we review the definition and basic properties of p-adic numbers. More details can
be found in the excellent book by Serre [SER 1979].

3.1 Definition of Q, and first properties

First, we introduce the notion of inverse limit of a directed family, which is useful in the construction
of the p-adic numbers.

Definition 3.1 Let I be a set with a partial ordering relation >, i.e., for all ¢, j, k € I we have
o i =1,
o ift>jandj > ktheni > k,

o if71 > jandj > itheni = j.

Then [ is a directed set if for all ¢, j there existsa k € I such thatk > 7 and k > j.

Definition 3.2 A directed family of groups is given by

39
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o adirected set
o foreachi € I a group A; and for 4, j € I, i > j a morphism of groups p;; : A; — A;
satisfying the compatibility relation: for all ¢, j, k € I with 7 > j > k, pji © Dij = Dik.
We denote by (A;, {p;; }jer) such a directed family.

Definition 3.3 Let (A4;, {pi; },cr) be a directed family of groups and let A be a group, together with
a set of morphisms {p; : A — A, },c; compatible with the p;;, i.e., p; = p;j o p; for i > j, that
satisfies the following universal property: let B be a group and let {¢; };cs be a set of morphisms
¢; : B — A; such that the following diagram commutes for i > j

then there is a morphism ¢ such that for all 7, j € I, the following diagram

B—2>4

A

<

is commutative. The group A is called the inverse limit of (A;, {pi;} jer) and is denoted by lim A;.
The universal property implies that lim A; is unique up to isomorphism.

Proposition 3.4 Let (A;, {pi;},cr) be a directed family of groups with I = N*. Let A = [] 4;
be the product of the family. Note that A itself is a group where the group law is defined compo-
nentwise. Consider the subset I' of A consisting of all elements (a;) with a; € A; and fori > j,
pij(a;) = a;. Itis easily verified that I is a subgroup of A which is isomorphic to lim A; where the
projections py, for k& € N* are given by py, : (a;) — ai. In particular, the inverse limit of a directed
family of groups always exists. Moreover, if the A; are rings, then lim A; is a ring, where the ring
operations are defined componentwise.

Definition 3.5 Let p be a prime number and [ = N*. Fori > j € I, let p;; : Z/p'Z — Z/p’Z be
the natural projections given by reduction modulo p?, then (Z/p'Z,{pij};er) is a directed family.
Its inverse limit lim Z /D' 7Z, denoted by Z,, is called the ring of p-adic integers.

The natural morphism of rings ¢» : Z — Z, with )(1z) = 1z, is injective, which implies that
char Z,, = 0. The invertible elements in Z,, are characterized by the following proposition.

Proposition 3.6 An element z € Z, is invertible if and only if z is not in the kernel of p;. For
every nonzero element z € 7, there exists a unique v, (z) € N such that z = u1)(p)"»*) with u an
invertible element in Z,. The integer v, (2) is called the p-adic valuation of z and we extend the
map vy, to Z, by defining v,(0) = —ooc.

Definition 3.7 Let R be aring and let v : R — Z be a map such that for all z,y € R,

« v(zy) = v(z)v(y);
« v(z +y) = min(v(z),v(y)) with equality when v(z) # v(y).

A map with the above properties is called a discrete valuation.
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Lemma 3.8 The map v, is a discrete valuation.

The ring Z,, is an integral domain and QQ,, denotes its field of fractions. The p-adic valuation v, can
be extended to Q,, by defining v,(1/x) = —v,(x) for x € Z,. Similarly, the natural embedding
¢ : Z — 7, can also be extended to the embedding Q — Q,, by defining ¢)(1/x) = 1/¢(x), for
z € 2.

The valuation of Q, induces a map defined by ||, = p~*»(*) for 2 € Q,. The properties of v,,
imply that | - |, is a norm on @Q,, which is called the p-adic norm. The p-adic norm also defines a
norm on Z and on Q via the map . For = € Z, the norm is given by |z|, = p~" with v the power
of p in the prime factorization of . For z/y € Q, the norm is given by |x/y|, = |z|p/|y|p. The set
1 (Q) is a dense subset of Q,, for | - |,. In fact, Q, can also be defined as the completion of Q with
respect to | - |,. This definition is similar to the definition of R as the completion of Q endowed with
the usual archimedean norm.

3.2 Complete discrete valuation rings and fields

3.2.1 First properties
Definition 3.9 A field K is a complete discrete valuation field if

« K is endowed with a discrete valuation vy
« the valuation induces a norm | - | on K by defining |z|x = A7?5(®) with A > 1
« every sequence in K which is Cauchy for | - | has a limit in K.

Remark 3.10 The topology induced by the norm |z|x = A~?%(*) does not depend on \.

It is easy to see that the subset R = {z € K | |z|x < 1} is aring. This ring is an integral domain
which is integrally closed, i.e., if z € K is a zero of a monic polynomial with coefficients in R then
x € R. The ring R is called the valuation ring of K. Clearly, M = {x € R | |z|x < 1} is the
unique maximal ideal of R. The field K = R/M is called the residue field of K. In the remainder
of this chapter, we will assume that the residue field is finite.

Proposition 3.11 An element x € R is invertible in R if and only if x is not in M.
Note that if K is a complete discrete valuation field with valuation ring R and maximal ideal M,

then the rings A; = R /M together with the natural projections p;; : A; — A; fori > j form a
directed family of rings. It is easy to see that R is isomorphic to lim A;.

Example 3.12 The field Q, is a complete discrete valuation field with residue field [F),.

Definition 3.13 An element 7 € R is called a uniformizing element if vi (m) = 1. Let p; be the
canonical projection from R to K. A map w : K — R is a system of representatives of I if for all
z € K we have p; (w(z)) = .

Definition 3.14 An element 2z € R is called a [ift of an element xo € K if p1(z) = 2. Conse-
quently, for all € C, w(x) is a lift of .

Now, let 7 be a uniformizing element, w a system of representatives of K in R and x € R. Let
n = vk (), then /7™ is an invertible element of R and there exists a unique x,, € K such that
VK (a: — ﬂ"w(xn)) = n + 1. Iterating this process and using the Cauchy property of K we obtain
the existence of the unique sequence (x;);>0 of elements of C such that

x = Z w(z)m'.

=0
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The following theorem classifies the complete discrete valuation fields.

Theorem 3.15 Let K be a complete discrete valuation field with valuation ring R and residue
field /C, assumed finite of characteristic p. If char K’ = p then R is isomorphic to a power series
ring K[[X1, X2, ...]]. If char K’ = 0 then K is an algebraic extension of Q,,.

From now on, we restrict ourselves to complete discrete valuation ring of characteristic 0 with a
finite residue field. By Theorem 3.15, any such ring can be viewed as the valuation ring of an
algebraic extension of Q).

3.2.2 Lifting a solution of a polynomial equation

Let K be a complete discrete valuation field with norm | - |k and let R be its valuation ring. Let
R[X] denote the univariate polynomial ring over R. The main result of this section is Newton'’s
algorithm which provides an efficient way to compute a zero of a polynomial f € R[X] to arbitrary
precision starting from an approximate solution.

Proposition 3.16 Let K be a complete discrete valuation field with valuation ring R and norm
|- |k. Let f € R[X] and let 2y € R be such that

|f (o)l < |f(xo)|%

then the sequence
f(xn)

Tn41 = Tn — f’({E )
n

3.1

converges quadratically towards a zero of f in R.

The quadratic convergence implies that the precision of the approximation nearly doubles at each
iteration. More precisely, let k = vg ( I (xo)) and let x be the limit of the sequence (3.1). Suppose
that x; is an approximation of x to precision n, i.e., (x —z;) € M", thenx; 11 = z; — f(x;)/ f'(x;)
is an approximation of x to precision 2n — k. Very closely related to the problem of lifting the
solution of a polynomial equation is Hensel’s lemma that enables one to lift the factorization of a
polynomial.

Lemma 3.17 (Hensel) Let f, Ay, By, U, V be polynomials with coefficients in R such that

° f = AkBk (mod Mk),
e UX)AR(X) 4+ V(X)Bi(X) = 1, with Ay, monic and deg U (X) < deg B (X) and
deg V(X) < deg Ap(X)

then there exist polynomials A1 and By 1 satisfying the same conditions as above with k replaced
by k + 1 and
Ap1 = A (mod M), By =By, (mod MF).

Iterating this lemma, we obtain an algorithm to compute a factor of a polynomial over R given a
factor modulo M.

Corollary 3.18 With the notation of Proposition 3.16, let f € R[X] be a polynomial and zg € K
such that x is a simple zero of the polynomial fo = p;(f). Then there exists an element x € R
such that py (z) = x¢ and x is a zero of f.
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3.3 The field Q, and its extensions

Let K be a finite algebraic extension of Q,, defined by an irreducible polynomial m € Q,[X]. It
can be shown that there exists a unique norm | - |x on K extending the p-adic norm on Q,. Let
R ={x € K | |z|x < 1} denote the valuation ring of K and let M = {x € R | |z|x < 1} be the
unique maximal ideal of R. Then K = R /M is an algebraic extension of IF,,, the degree of which
is called the inertia degree of K and is denoted by f. The absolute ramification index of K is the
integer e = vk (¢(p)). The extension degree [K : @], the inertia degree f, and the ramification
index satisfy the following fundamental relation.

Theorem 3.19 Let d be the degree of K/Q,, thend = ef.

3.3.1 Unramified extensions

Definition 3.20 Let K/Q, be a finite algebraic extension, then K is called absolutely unramified
if e = 1. An absolutely unramified extension of degree d is denoted by Q, with ¢ = p® and its
valuation ring by Z,.

Proposition 3.21 Denote by P; the reduction morphism R[X]| — K[X] induced by p; and let m
be the irreducible polynomial defined by P (m). The extension K/Q, is absolutely unramified if
and only if degm = degm. Letd = degm and F; = F . the finite field defined by T, then we
have p1(R) = F,. Let K; and K be two unramified extensions of QQ,, defined respectively by m;
and my then Ky ~ K5 if and only if deg m; = deg mo.

As a consequence, every unramified extension of Q,, is isomorphic to Q,[X|/(m (X)) with m being
an arbitrary degree d lift of an irreducible polynomial over IF,, of degree d. Letw : F, — Z, be
a system of representatives of F;; every element = of Z, can be written as a power series * =
Yoo ow(wi)p" with (z;);>0 a sequence of elements of Fy.

Proposition 3.22 An unramified extension of QQ,, is Galois and its Galois group is cyclic gener-
ated by an element ¥ that reduces to the Frobenius morphism on the residue field. We call this
automorphism the Frobenius substitution on K.

3.3.2 Totally ramified extensions

Definition 3.23 Let K/Q,, be a finite algebraic extension, then K is called totally ramified if f = 1.

Definition 3.24 A monic degree d polynomial P(X) = Z?:o a; X" in Q,[X] is an Eisenstein
polynomial if it satisfies

e vpag) =1,
o vp(a;) > 1, fori=1,...,d—1.

Such a polynomial is irreducible.

Proposition 3.25 Let K be a totally ramified extension of Q,; then there exists an Eisenstein poly-
nomial P such that K is isomorphic to Q,[X]/(P).
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3.3.3 Multiplicative system of representatives

Let K be a complete discrete valuation field of characteristic zero, with valuation ring R and residue
field /C, assumed finite of characteristic p. Then K is isomorphic to an algebraic extension of Q,,.

Proposition 3.26 There exists a unique system of representatives w which commutes with p-th
powering, i.e., for all z € K, w(2?) = w(x)P. This system w is multiplicative in the following way:
forall z,y € K we have w(zy) = w(z)w(y).

Such a system can be obtained as follows. Let zy € K. Since I is a perfect field, for each r € N
there exists #,, € K such that 22" = zo. Set X, = {x € R | pi(z) = x,} and let Y, be the
set {xpr | z € Xr}. It is easy to see that for all y € Y, p1(y) = zo. Moreover, we have for all
x,y € Y., vg(x —y) > r. This means by the Cauchy property that there exists a unique element
z € R such that z € Y, for all 7. Then simply define w(zg) = z. The system of representatives
defined in this way is exactly the unique system that commutes with p-th powering.

Let 7 be a uniformizing element of R and let w be the multiplicative system of representatives of
K in R that commutes with p-th powering. Write z € R as z = .- w(z;)m" with (z;);>0 the
unique sequence of elements of IC as defined in Section 3.2. Let X be the Frobenius substitution on
K; then we have

Y(x) = Z w(z;)Prt.

oo
=0

3.3.4 Witt vectors

Definition 3.27 Let p be a prime number and (X;);cy a sequence of indeterminates. The Witt
polynomials W,, € Z[Xy, ..., X,] are defined as

Wo = Xo,
Wy = X5+PX17

zn:pinn_i.
i=0

Theorem 3.28 Let (Y;);cn be a sequence of indeterminates, then for every ®(X,Y) € Z[X,Y]
there exists a unique sequence (¢; )ien € Z[Xo, X1,...; Yy, Y1,...] such thatforalln > 0

Wy,

Wn (¢07 ) ¢n) = (I)(Wn(X07 RN Xn)7 Wn(Yb; R Y;L))

Let (S;)ien, resp. (P;)ien, be the sequence of polynomials (¢;);en associated via Theorem 3.28
with the polynomials ®(X,Y) = X + Y, resp. ®(X,Y) = X x Y. Then for any commutative ring
R, we can define two composition laws on R: let a = (a;)ieny € RN and b = (b;)ien € RY, then

a+b=(Si(ab);qy and axb=(P(a,d));y

Definition 3.29 The set R endowed with the two previous composition laws is a ring called the
ring of Wit vectors with coefficients in R and is denoted by W (R).

The relation with p-adic numbers is the following. Let F,, with ¢ = p be a finite field of characteris-
tic p, then W (F,) is canonically isomorphic to the valuation ring of the unramified extension of de-
gree d of Q. Via this isomorphism, the map F : W (F,) — W (F,) givenby F ((a;)ien) = (al)ien
corresponds to the Frobenius substitution 2.
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This chapter introduces the main characters of this book — curves and their Jacobians. To this
aim we give a brief introduction to algebraic and arithmetic geometry. We first deal with arbitrary
varieties and abelian varieties to give the general definitions in a concise way. Then we concentrate
on Jacobians of curves and their arithmetic properties, where we highlight elliptic and hyperelliptic
curves as main examples. The reader not interested in the mathematical background may skip
the complete chapter as the chapters on implementation summarize the necessary mathematical
properties. For full details and proofs we refer the interested reader to the books [CAFL 1996,
FUL 1969, LOR 1996, SIL 1986, STI 1993, ZASA 1976].

Throughout this chapter let K denote a perfect field (cf. Chapter 2) and K its algebraic closure.
Let L be an extension field of K. Its absolute Galois group Autz,(L) is denoted by G

4.1 Algebraic varieties

We first introduce the basic notions of algebraic geometry in projective and affine spaces.
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4.1.1 Affine and projective varieties

Before we can define curves we need to introduce the space where they are defined and it is also
useful to have coordinates at hand.

4.1.1.a Projective space

We shall fix a field K as above. As a first approximation of the n-dimensional projective space
P™/K :=P" over K we describe its set of K -rational points as the set of (n + 1)-tuples

P"(K):={(Xo:X1:...: X;,) | X; € K, atleast one X is nonzero}/ ~
where ~ is the equivalence relation
(Xo:X1:..: X))~ (Yo:Y1:...: V) <= 3INeK Vi: X; = \Y,.

The coordinates are called homogeneous coordinates. The equivalence classes are called projective

points. Next we endow this set with a K -rational structure by using Galois theory.

Definition 4.1 Let L be an extension field of K contained in K. Tts absolute Galois group G/,
operates on P"(K) via the action on the coordinates. Obviously, this preserves the equivalence
classes of ~. The set of L-rational points P"(L) is defined to be equal to the subset of P fixed by

G'r. In terms of coordinates this means:
P*(L):={(Xo:...: Xp,) e P"[IN€ K Vi: \X; € L}.

Note that in this definition for an L-rational point one does not automatically have X; € L. How-
ever, if X; # 0 then Vi : Xi/X; e L.

Let P € P"(K). The smallest extension field L of K such that P € P™(L) is denoted by K (P)
and called the field of definition of P. One has

K@P)= (] L

G P=P

Let S C P*(K) and L be a subfield of K containing K. Then S is called defined over L if and only
if for all P € S the field K (P) is contained in L, or, equivalently, G, - S = S.

Remark 4.2 Let L be any extension field of K, not necessarily contained in K. We can define
points in the n-dimensional projective space over L in an analogous way and an embedding of K
into L induces a natural inclusion of points of the projective space over K to the one over L. This
is a special case of base change.

To be more rigorous, one should not only look at the points of P™ over extension fields of K as sets,
but endow P™ with the structure of a topological space with respect to the Zariski topology. This
will explain the role of the base field K much better.

First recall that a polynomial f(Xo,...,X,) € K[Xo,...,Xy] is called homogeneous of de-
gree d if it is the sum of monomials of the same degree d. This is equivalent to requiring that
f(AXo,...,AX,,) = M f(Xo,...,X,) forall \ € K. Especially, this implies that the set

Dy(L) :={P cP"(L) | f(P) # 0}

is well defined. o .
One defines a topology on P (K) by taking the sets D (/) =: Dy as basic open sets. The L-
rational points are denoted by Df(L) = P"(L) () Dy. To describe closed sets we need the notion
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of homogeneous ideals. An ideal I C K[Xg, X1,...,X,] is homogeneous if it is generated by
homogeneous polynomials. For I # (X, ..., X,,), define

Vi = {P e P"(R) | f(P) =0, Vf € I}

and Vi (L) = V;(P™(L). One sees immediately that V; is well defined. So a subset S C P"*(K)
is closed with respect to the Zariski topology attached to the projective space over K if it is the set
of simultaneous zeroes of homogeneous polynomials lying in K[Xo, ..., X,].

Example 4.3 The set of points of the projective n-space P" and the empty set ) are closed sets as
they are the roots of the constant polynomials 0 and 1. By the same argument they are also open
sets.

Example 4.4 Let f € K[Xo, X1,...,X,] be a homogeneous polynomial. The closed set V) is
called a hypersurface.

Example 4.5 Define U; := Dx,, thus

U(L)={(Xo: X1:...: X;,) eP*(L) | X; # 0}
and let W; := V| x,) with

Wi(L) = {(Xo:X1:...: X,) e P"(L) | X; = 0}.
The U; are open sets, the W; are closed.

Example 4.6 Let (ko, ey kn) € K" and not all k; = 0. Take fij (X(), ceey Xn) = iji — kl‘Xj
and I = ({f;; | 0 <4,j < n}). Obviously, I is a homogeneous ideal and taking (ko : ... : k) as
a homogeneous point, I is independent of the representative. Then V(L) = {(ko I kn,)}, VL.
This shows that K -rational points are closed with respect to the Zariski topology. This is not true if
P is not defined over K. The smallest closed set containing P is the G x-orbit G - P.

From now on we write X for (Xo,...,X,). If T C KJ[X] is a finite set of homogeneous
polynomials we define V' (T') to be the intersection of the V{,), f; € T. Let I = (T') be the ideal
generated by the f;. Then V(T) = V7.

41.1.b Affine space

As in the projective space we begin with the set of K -rational points of the affine space of dimension
n over K given by the set of n-tuples

A" = {(xl, ce ) | a € F}
The set of L-rational points is given by
A™(L) := {(xl, ce ) | ag € L}
which is the set of G'z-invariant points in A™ (K ) under the natural action on the coordinates.

As in the projective case one has to consider A™ as a topologic space with respect to the Zariski
topology, defined now in the following way: For f € K[x1,...,x,] let

Dy(L) = {P e A"(L) | f(P) # 0}

and take these sets as base for the open sets.
Closed sets are given in the following way: for anideal I C KJx1, ..., 2] let

Vi(L) = {P e A"(L) | f(P) =0, ¥f € I}.

A set S C A" is closed if there is an ideal I C K[z, ..., x,] with S = V.
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Example 4.7 Let (k1,...,k,) € A"(K) andput f; = 2; — k; and I = ({fi | 1 <i < n}). Then
Vi = {(kl, e kn)} Hence, the K -rational points are closed.
Please note, if P € A” \ A™(K) the set { P} is not closed.

Remark 4.8 For closed S C A™ assume that S = V;. The ideal [ is not uniquely determined by
S. Obviously there is a maximal choice for such an ideal, and it is equal to the radical ideal (cf.
[ZASA 1976, pp. 164]) defined as

VI={feKl[z,...,x,] | Ik €N with f*eI}.

As in the projective case we take x as a shorthand for (z1,...,2,).

4.1.1.c Varieties and dimension

To define varieties we use the definition of irreducible sets. A subset S of a topological space is
called irreducible if it cannot be expressed as the union S = S; U Sy of two proper subsets closed
in S. We additionally define that the empty set is not irreducible.

Definition 4.9 Let I be an affine (projective) closed set. One calls V' an affine (projective) variety
if it is irreducible.

Example 4.10 The affine 1-space A! is irreducible because K |[x1] is a principal ideal domain and
so every closed set is the set of zeroes of a polynomial in x;. Therefore, any closed set is either
finite or equal to A'. Since A! is infinite it cannot be the union of two proper closed subsets.

From commutative algebra we get a criterion for when a closed set is a variety.

Proposition 4.11 A subset V of A™ (resp. P™) is an affine (projective) variety if and only if V' = V;
with I a (homogeneous) prime ideal in K [z] (resp. K[X]).

We recall that the Zariski topology is defined relative to the ground field K. For extension fields L
and given embeddings o of K into L fixing K we have induced embeddings of P"/K — P"/L.
Due to the obvious embedding of K[X]into L[X] and as the topology depends on these polynomial
rings, we can try to compare the Zariski topologies of affine and projective spaces over K with
corresponding ones over L.

If L is arbitrary, a closed set in the space over K may not remain closed in the space over L.

But if L is algebraic over K and if S is closed in the affine (projective) space over K then
its embedding o - S is closed over L. Namely, if S = V; with I C KJz] (resp. K[X]) then
08 =Vyip (tesp. 0+ S = Vipx).

But varieties over K do not have to be varieties over L since for prime ideals I in K [z] it may
not be true that I - L[z] is a prime ideal.

Example 4.12 Consider I = (2? — 223) C Q[x1, z2]. Over Q(v/2) the variety V7 splits because
x? — 223 = (x1 — V2x2)(21 + V213). Therefore, the property of a closed set being a variety
depends on the field of consideration.

Example 4.13 Let I/ be an affine variety, i.e., a closed set in some A" for which the defining ideal 1
is prime in K[z]. The m-fold Cartesian product V™ is also a variety, embedded in the affine space

A™™. For affine coordinates choose (x1,...,zL,... 27, ... 2™), define I; C K|[z'] obtained

) n?

from I by replacing ; by xz Then the ideal of V™ is given by (11, ..., Ip,).

Definition 4.14 A variety V of the affine (projective) space A™ (IP™) over K is called absolutely
irreducible if it is irreducible as closed set with respect to the Zariski topology of the corresponding
spaces over K.
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Example 4.15

(i) The n-dimensional spaces A™ and P" are absolutely irreducible varieties as they corre-
spond to the prime ideal (0).
(i) The sets V(s) and V() with f € K[z] and F' € K[X] are absolutely irreducible if and
only if f and F are absolutely irreducible polynomials, i.e., they are irreducible over K.
(iii) Let S be a finite set in an affine or projective space over K. The set S is absolutely
irreducible if and only if it consists of one (K -rational) point.

Example 4.16 Let f(z1,72) = 3 — 3 — ayx1 — ag € K|[x1,z2]. This polynomial is absolutely

irreducible, hence V) is an irreducible variety over K and over any extension field of K contained
in K.

The affine and the projective n-spaces are Noetherian, which means that any sequence of closed
subsets S; O Sy DO ... will eventually become stationary, i.e., there exists an index r such that

Sy = Sy41 = .... This holds true as any closed set corresponds to an ideal of K[z] or K[X],
respectively, and these rings are Noetherian.

Definition 4.17 Let V be an affine (projective) variety. The dimension dim (V') is defined to be the
supremum on the lengths of all chains Sy D S1 D --- D .5, of distinct irreducible closed subspaces
S; of V. A variety is called a curve if it is a variety of dimension 1.

Example 4.18 The dimension of A! is 1 as the only irreducible subsets correspond to nonzero
irreducible polynomials in 1 variable. In general, A™ and P" are varieties of dimension n.

Example 4.19 Let 0,1 # f € K[z1, 2] be absolutely irreducible. Then V| is an affine curve as
the only proper subvarieties are points P € A? satisfying f(P) = 0.

Example 4.20 Let V' be an affine variety of dimension d. Then the Cartesian product (cf. Exam-
ple 4.13) V™ has dimension md by concatenating the chains of varieties.

4.1.1.d Relations between affine and projective space

Here we show how the topologies introduced for P and A™ are made compatible. For both spaces
we defined open and closed sets via polynomials and ideals, respectively.

Let F' € K[Xo, X1, ..., X,] be a homogeneous polynomial of degree d. The process of replac-
ing
F(Xo,X1,...,X,) by F;:=F(x1,...,z;,L,zip1,...,x,) € K[x1,..., 2]
is called dehomogenization with respect to X;. The reverse process takes a polynomial f € K|z]
and maps it to

,fi = X;]f(Xo/X“Xl/X“ .. .,X,L'_l/X,L',XIL'+1/X7;, e ,Xn/Xi),

where d is minimal such that f; is a polynomial in K [X]. By applying these transformations, we
relate homogeneous (prime) ideals in K [X] to (prime) ideals in K [z] and conversely. So we can
expect that we can relate affine spaces with projective spaces including properties of the Zariski
topologies.

Example 4.21 The opensets U; = Dx, C P™ are mapped to A" by dehomogenizing their defining
polynomial X; with respect to X;. The inverse mappings are given by

¢ A" — U;

(T1,...yTn) = (x1:.ooixilizipr ... xy)
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Therefore, for any 0 < 7 < n we have a canonical bijection between U; and A™ which is a homeo-
morphism as it maps closed sets of U; to closed sets in A™.

The sets Uy, ..., U, cover the projective space P". This covering is called the standard covering.
The maps ¢; can be seen as inclusions A™ C P".

If V'is a projective closed set such that V' = V;(y-) with homogeneousideal (V') C K[Xo, ..., X
we denote by V; the set qﬁ;l(V NU;) for 0 < i < n. The resulting set is a closed affine set with
ideal obtained by dehomogenizing all polynomials in I(V') with respect to X;. This way, V is
covered by the n + 1 sets ¢;(V;).

For the inverse process we need a further definition:

Definition 4.22 Let V; C A" be an affine closed set. Using one of the ¢;, embed V7 into P™ by
n Pi n
Vi Cc A" = P".

The projective closure V 1 of V7 is the closed projective set defined by the ideal T generated by the
homogenized polynomials {f; | f € I'}.

The points added to get the projective closure are called points at infinity. Note that in the definition
we need to use the ideal generated by the f;’s, a set of generators of I does not automatically
homogenize to a set of generators of 1. These processes lead to the following lemma that describes
the relation between affine and projective varieties.

Lemma 4.23 We choose one embedding ¢; from A™ to P" and identify A" with its image. Let
V' C A™ be an affine variety, then V' is a projective variety and

V=VnNA"
Let V' C P be a projective variety, then V' N A™ is an affine variety and either
VNA"=0 or V=V NA".

If V is a projective variety defined over K then V' N A" is empty or an affine variety defined over
K. There is always at least one ¢ such that V' N ¢;A™ =: V{; is nonempty. We call V{;y a nonempty
affine part of V.

For example, let C' C P™ be a projective curve. The intersections C' N U; lead to affine curves
Cliy. Starting from an affine curve C, C A™ one can embed the points of C, into P" via ¢;. The
result will not be closed in the Zariski topology of P™ so one needs to include points from P" \ U;
to obtain the projective closure C,.

Example 4.24 Consider the projective line P'. It is covered by two copies of the affine line A'.
When embedding A! in P! via ¢9 we miss a single point (0 : 1) which is called the point at infinity
denoted by oc.

Example 4.25 Let V' be a projective variety embedded in P™*. To define the m-fold Cartesian prod-
uct one uses the construction for affine varieties (cf. Example 4.13) for affine parts V, and “glues
them together.”

Warning: it is not possible to embed V'™ in P™™ in general. One has to use constructions due to
Segre [HAR 1977, pp. 13] and ends up in a higher dimensional space.
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4.2 Function fields

Definition 4.26 Let IV be an affine variety in the n-dimensional space A" over K with correspond-
ing prime ideal I. Denote by
K[V]:=Kl[z1,...,x,)/1

the quotient ring of K[z, ..., z,] modulo the ideal I. This is an integral domain, called the coor-
dinate ring of V. The function field K(V') of V is the quotient field

K(V) := Quot(K[V]).

The maximal algebraic extension of the field K contained in K (V) is called the field of constants
of K(V)/K.

Definition 4.27 Let V be a projective variety over K. Let V, C A™ be a nonempty affine part of
V. Then the function field K (V') is defined as K (V).

One can check that K (V') is independent of the choice of the affine part V,,. Thus, the notation
K (V') makes sense. But note that K'[V,] depends on the choice of V.

Obviously, the elements f € K (V) can be represented by fractions of polynomials f = g/h,
fyg € K[z1,...,zy] or as fractions of homogeneous polynomials of the same degree f = g/h,
f,9 € K[Xo, X1,...,X]. Then functions f1; = g1/hy and fo = g2/hs are equal if g1ha — gahy €
(V).

In Example 4.12, the splitting was induced by an algebraic extension of the ground field. We can
formulate a criterion for V' to be absolutely irreducible:

Proposition 4.28 A variety V' is absolutely irreducible if and only if K is algebraically closed in
K(V),ie., K is the full constant field of K (V) (cf. [STI 1993, Cor. IIL.6.7]).

Example 4.29 Consider A" as affine part of P". Its coordinate ring K[A"] = Klx1,...,2,] is
the polynomial ring in n variables. The function field of P" is the field of rational functions in n
variables.

From now on, we assume that V' is absolutely irreducible.

Let L be an algebraic extension field of K. As pointed out above the set V' is closed under the
Zariski topology related to the new ground field L and again irreducible by assumption. We denote
this variety by V1. We get

Proposition 4.30 If V is affine then K[V;] = K[V]- L. If V is affine or projective then K (V) =
K(V)-L.

The proof of this proposition follows immediately from the fact that for affine V' with corresponding
prime ideal I we get VL, = Vi.r [y

Example 4.31 Consider the projective curve C' = P! and the affine part C, = A'. For any field
K C L C K the coordinate ring of C, is the polynomial ring in one variable L[C,] = L[z1] and
the function field is the function field in one variable L(x1).

A function field K (V') of a projective variety V' is finitely generated. Since K is perfect the exten-
sion is also separably generated. Therefore, the transcendence degree of K (V')/K is finite.

Lemma 4.32 Let K (V) be the function field corresponding to the projective variety V. The dimen-
sion of V' is equal to the transcendence degree of K (V).
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4.2.1 Morphisms of affine varieties

We want to define maps between affine varieties that are continuous with respect to the Zariski
topologies. We shall call such maps morphisms. We begin with V' = A"™.

Definition 4.33 A morphism @ from A™ to the affine line Al is given by a polynomial f(z) € K|[z]
and defined by

p: A" — Al
P=(a1,...,a,) f((alwuvan))::f(P)'

One sees immediately that f is uniquely determined by ¢.

To ease notation we shall identify f with . Hence the set of morphisms from A" to the affine
line is identified with K[z]. In fact we can make the set of morphisms to a K-algebra in the usual
way by adding and multiplying values. As K -algebra it is then isomorphic to K [x].

As desired, the map f is continuous with respect to the Zariski topology. It maps closed sets to
closed sets, varieties to varieties, and for extension fields L of K we get f(A™(L)) C A'(L).

Definition 4.34 A morphism ¢ from A™ to A™ (for n,m € N) is given by an m-tuple

(fl(x)v SRR fm(x))
of polynomials in K [z] mapping P € A" to (f1(P),..., fm(P)).

Since ¢ is determined by f1, ..., f, the set of morphisms from A™ to A™ can be identified with
K[xz]™. Again one checks without difficulty that morphisms are continuous with respect to the
Zariski topology and map varieties to varieties.

Let V be an affine variety in A™ with corresponding prime ideal I C K|x].

Definition 4.35 A morphism from V. C A™ to a variety W C A™ is given by the restriction to V'
of a morphism from A™ to A™ with image in .
We denote the set of morphisms from V' to W by Morg (V, W).

Example 4.36 As basic example take W = A'. For V = A! we already have Morg (A, A!) =
K|z]. For an arbitrary variety V = V7 one has that Morg (V, A!) is as K-algebra isomorphic to
K[V] = K[z]/I.

Remark 4.37 Take ¢ € Morg (V, W) and f € Morg (W, A') = K[W]. Then f o ¢ is an element
of Morg (V, A') = K[V], and so we get an induced K -algebra morphism

" K[W] — K[V].
The morphism ¢* is injective if and only if ¢ is surjective. If ™ is surjective then ¢ is injective.

Definition 4.38 The map ¢ is an isomorphism if and only if ¢* is an isomorphism. This means that
the inverse map of ¢ is again a morphism, i.e., given by polynomials.

Two varieties V' and W are called isomorphic if there exists an isomorphism from V' to W, and
we have seen that this is equivalent to the fact that K [V] is isomorphic to K [W] as K -algebra.

Example 4.39 Assume that char(K) = p > 0. Then the exponentiation with p is an automor-
phism ¢, of K since K is assumed to be perfect. The map ¢, is called the (absolute) Frobenius
automorphism of K (cf. Section 2.3.2).
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We can extend ¢, to points of projective spaces over K by sending the point (Xo,...,X,,) to
(XP,...,XP). We apply ¢, to polynomials over K by applying it to the coefficients.

If V is a projective variety over K with ideal I we can apply ¢, to I and get a variety ¢, (V') with
ideal ¢, (I). The points of V' are mapped to points on ¢, (V).

The corresponding morphism from V' to ¢, (V') is called the Frobenius morphism and is again
denoted by ¢,. We note that ¢,, is nor an isomorphism as the polynomial rings K[V]/K|[¢p,(V)]
form a proper inseparable extension.

4.2.2 Rational maps of affine varieties

Let V' C A™ be an affine variety with ideal I = I(V') and take ¢ € K[V] with representing element
f € Klx].

By definition, the set Dy consists of the points P in A™ in which f(P) # 0. It is open in the
Zariski topology of A", and hence U, := Dy NV is openin V. Its complement V,, in V is the zero
locus of ¢. It is not equal to V' if and only if U,, is not empty, and this is equivalent to f ¢ I.

We assume now that f ¢ I. For P € U, define (1/¢)(P) := f(P)~L.

Definition 4.40 Assume that U is a nonempty open set of an affine variety V' and let the map 77 be
given by

ro: U — Al
P o= (¢/e)(P)

for some ¢, p € K[V] and U C U,,. Then ry is a rational map from V to A' with definition set U.

We introduce an equivalence relation on rational maps: for given V' the rational map ry; is equivalent
to r};, if for all points P € U N U’ we have: vy (P) = 17, (P).

Definition 4.41 The equivalence class of a rational map from V' to A! is called a rational function
onV.

Proposition 4.42 Let V' be an affine variety. The set of rational functions on V' is equal to K (V).
The addition (resp. multiplication) in K (V') corresponds to the addition (resp. multiplication) of
rational functions defined by addition (resp. multiplication) of the values.

Let V' C A™. As in the case of morphisms we can extend the notion of rational maps from the case
W = A! to the general case that W C A™ is a variety:

Definition 4.43 A rational map r from V to W is an m-tuple of rational functions (r1,...,7,)
with r; € K (V') having representatives R; defined on a nonempty open set U C V with R(U) :=
(R (U),.. .,Rm(U)) cWw.

A rational map r from V' to W is dominant if (with the notation from above) R(U) is dense in
W, i.e., if the smallest closed subset in W containing R(U) is equal to .

A rational map r : V' — W is birational if there exists an inverse rational map ' : W — V such
that 7’ o r is equivalent to Idy and r o 1’ is equivalent to Idyy.

If there exists a birational map from V' to W the varieties are called birationally equivalent.

Example 4.44 Consider the rational maps

o AT — A" Y = (e,
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where (for ¢ < j)

Ty /T, k<i

- 1/xz; k=i

1] = 7

’I‘k (x1,.~,xn)' xk—l/xj) l<k<]
xk/a?j, j<k'

The case i > j works just the same. For fixed j and arbitrary i the maps %/ are defined on Dy;.
Using the embeddings ¢; of A™ into P one has the description

=7t o i

The inverse map is just r/* and so 7"/ represents a birational map regular on D, N D, . It describes
the coordinate transition of affine coordinates with respect to ¢; to affine coordinates with respect
to ¢; on P,

Proposition 4.45 Assume that the rational map r from V' to W is dominant. Then the composition
of r with elements in K (W) induces a field embedding r* of K (W) into K (V') fixing elements in
K, generalizing the definition made for morphisms in Remark 4.37.

If r is birational then K (V) is isomorphic to K (W) as K -algebra.

Example 4.46 A projective curve C' corresponds to a function field of transcendence degree 1.
Since K is perfect, there are elements x1, 22 € K(C) and an irreducible polynomial f(x1,xs)
such that K (C) = Quot(K[z1, x2]/(f(21,22))). Hence, C (and every affine part of dimension
1 of ) is birationally equivalent to the plane curve V() and of course to its projective closure
V( £ C P2,

Example 4.47 We consider again the Frobenius morphism ¢,, from Example 4.39. The map
9+ K (6p(V)) = K(V)

has as its image K (V)P since the coordinate functions of V' are exponentiated by p under the map

Pp-

4.2.3 Regular functions

We continue to assume that V' is an affine variety.

Definition 4.48 A rational function f € K (V') is regular at a point P € V if f has as representative
arational map f with set of definition U containing P.

In other words f is regular at P € V' if there is an open neighborhood U of P where fi; = (g/h)|u
for g,h € K[z] and P € Dy, If this is the case we say that f is defined at P with value f(P) =

9(P)/h(P).

Definition 4.49 For two varieties V C A™, W C A™ arational map r : V. — W is regular at P if
there is a nonempty open set U of V' containing P such that the restriction of r to U is given by an
m-tuple of rational maps defined on U.

In other words: a map r is regular if locally it can be represented via m-tuples of quotients of
polynomials in K [z] which are defined at P € U.
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4.2.4 Generalization to projective varieties

We want to generalize the definitions of morphisms to projective varieties.

Definition 4.50 Let V' C P and W C P™ be projective varieties. Let ¢ be a map from V' to W
such that the following holds:

(i) ThesetV = U:':l V; with V; = V' N U, the standard affine parts of V.
(ii) The morphism ¢; := |y, is an affine morphism to an affine part W; of W.

(iii) The polynomials (f{(z),..., f (z)) describing ¢ on V; with respect to the standard
affine coordinates are transformed into the polynomials ( fi@),.... f (x)) describing
; in the standard affine coordinates related to V; under the coordinate transformation
considered in Example 4.44.

Then ¢ is a morphism from'V to W: ¢ € Morg (V, W).

The notions of rational functions of projective varieties V' and of regularity in a point P of such
functions are easier to define since they are local definitions.

We define rational maps as equivalence classes of rational maps defined on the affine parts of V'
compatible with the transition maps on intersections of standard affine pieces U; (cf. Example 4.44).
To define regularity at P we first choose an affine part V; of V' containing P and then require that
there is an open neighborhood U of P in V; such that the rational map obtained by restriction is
defined on U.

A rational map from W to P! is called a rational function of V.

Proposition 4.51 The set of rational functions on a projective variety V' forms a field isomorphic
to K (V) which is equal to the field of rational functions on a nonempty affine part of V.

A function f : V — K is regular at P € V if there is an open neighborhood U of P where
f = g/h for homogeneous polynomials g, h € K[X] of the same degree and h(Q) # 0, VQ € U.

4.3 Abelian varieties

We want to use the concepts introduced above for a structure that will become most important for
the purposes of the book.

Remark 4.52 Already in the definition we shall restrict ourselves to the cases that will be considered
in the sequel. So we shall assume throughout the whole section that all varieties are defined over K
and are absolutely irreducible.

4.3.1 Algebraic groups

We combine the concept of groups with the concept of varieties in a functorial way.

Definition 4.53 An (absolutely irreducible) algebraic group G over a field K is an (affine or pro-
jective) absolutely irreducible variety defined over K together with three additional ingredients:

(i) the addition, i.e., a morphism

m:GxG—gG,

(ii) the inverse, i.e., a morphism

i:G—g,
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(iii) the neutral element, i.e., a K -rational point
0€G(K),
satisfying the usual group laws:
mo (Idg xm) = m o (m x Idg) (associativity),

mi{oyxg = P2,

where ps is the projection of G X G on the second argument, and
mo (Z X Idg) O(Sg = Co,
where dg is the diagonal map from G to G x G and ¢y is the map which sends G to 0.

Let L be an extension field of K. Let G(L) denote the set of L-rational points. The set G(L) is a
group in which the sum and the inverse of elements are computed by evaluating morphisms that are
defined over K, that do not depend on L, and in which the neutral element is the point 0.

A surprising fact is that if G is a projective variety the group law m is necessarily commutative.

Definition 4.54 Projective algebraic groups are called abelian varieties.

From now on we shall require m to be commutative. We can use a classification theorem which
yields that G is an extension of an abelian variety by an affine (i.e., the underlying variety is affine)
algebraic group. So, for cryptographic purposes we can assume that G is either affine or an abelian
variety as by Theorem 2.23 one is interested only in (sub)groups of prime order.

Affine commutative group schemes that are interesting for cryptography are called fori. The
reader can find the definition and an interesting discussion on how to use them for DL systems
in [SIRU 2004].

Remark 4.55 To make the connection with abelian groups more obvious we replace “m(P, Q)"
with the notation P @ @ for P, € G(K) and i(P) by —P.

We shall concentrate on abelian varieties from now on and shall use as standard notation A instead
of G.

4.3.2 Birational group laws

Assume that we are given an abelian variety .A. Since we want to use .4 for DL systems we shall
not only need structural properties of A but explicitly compute with its points. In general this seems
to be hopeless. Results of Mumford [MUM 1966] and Lange—Ruppert [LARU 1985] show that the
number of coordinate functions and the degree of the addition formulas both grow exponentially
with the dimension of the abelian variety. Therefore, we have to use special abelian varieties on
which we can describe the addition at least on open affine parts.

By definition .A can be covered by affine subvarieties V;. Choose one such V' := V;. For [ depending
on V one finds coordinate functions X7, ..., X; defining V' by polynomial relations

(AKX, XD, (X, X))

The L-rational points V(L) C A(L) are the elements (z1,...,7;) € L!, where the polynomials f;
vanish simultaneously. The addition law can be restricted to V' x V and induces a morphism

mviVXV—>A.
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For generic points of V' x V' the image of my is again contained in V. So my is given by addition
Sunctions R; € K(X1,...,X;;Y1,...,Y]) such that for pairs of L-rational points in V' x V' we get

((xla“wxl)@(ylv"'vyl)) = (R1($1,~~,$l§y1,-~,yl)a~~~aRl($17---$l§y17~-~ayl))~

Remark 4.56 This is a birational description of the addition law that is true outside proper closed
subvarieties of V' x V. The set of points where this map is not defined is of small dimension and
hence with high probability one will not run into it by chance. But it can happen that we use pairs
of points on purpose (e.g., lying on the diagonal in V' x V') for which we need an extra description
of m.

We shall encounter examples of abelian varieties with birational description of the group law in later
chapters. In fact it will be shown that one can define abelian varieties from elliptic and hyperelliptic
curves — they constitute even the main topics of this book.

4.3.3 Homomorphisms of abelian varieties

We assume that A and B are abelian varieties over K with addition laws & (resp. @'). Let ¢ be an
element of Mor g (A, B).

Example 4.57 Let P € A(K) and define
tp: A — A
Q — PaoQ.
Here, ¢ p is called the franslation by P and lies in Morg (A, A).

A surprising fact is that for all ¢ € Morg (A, B) we have

p(P® Q) =¢(P) & ¢(Q)

for all points P, Q of A if and only if (0) is the neutral element of 3. In other words every
morphism from A to B is a homomorphism with respect to the addition laws up to the translation
map t_(, (o)) in B. The set of homomorphisms from A to B is denoted by Hom g (A, B).

Let L be an extension field of K and take ¢ € Homg (A, B). We get a group homomorphism
v+ A(L) — B(L) which is given by evaluating polynomials with coefficients in /. An important
observation is that o7, commutes with the action of the Galois group G i of K.

The set of homomorphisms Hom g (A, B) becomes a Z-module in the usual way: for 1, ps €
Homg (A, B) and points P of A define

(01 + 2)(P) = (p1(P) ® p2(P)).
In many cases it is useful to deal with vector spaces instead of modules, and so we define
Homp (A, B) := Homg (A, B) @z Q.
In the next chapter we shall see that Homx (A, B)? is a finite dimensional vector space over Q.

Remark 4.58 Homomorphisms of abelian varieties behave in a natural way under base change: let
L be an extension field of K and let Ay, 51, be the abelian varieties obtained by scalar extension to
L,Homy (A, B) := Homp, (AL, By,). The Galois group G, acts in a natural way on Mor, (A, Br,)
and hence on Homyp, (A, B).



58 Ch. 4 Background on Curves and Jacobians

Lemma 4.59 With the notations from above we get

(i) Let Lo be the algebraic closure of K in L. Then Homp, (A, B) = Homp, (A, B).
(ii) For L contained in K we get Hom (A, B) = Homz (A, B)“*.

Because of the next results we can think of abelian varieties as behaving like abelian groups.

Proposition 4.60 Take ¢ € Homg (A, B).
(1) The image Im(¢) of ¢ is a subvariety of 5, which becomes an abelian variety by restrict-
ing the addition law from B, i.e., it is an abelian subvariety of 5.

(ii) The kernel ker (i) of o is by definition the inverse image of 0. Itis closed (in the Zariski
topology) in .A. Its points consist of all points in A(K) that are mapped to 05 by ¢z and
hence form a subgroup of A(K).

(iii) The kernel ker(¢) contains a maximal absolutely irreducible subvariety ker(¢)° contain-
ing 0.4. This subvariety is called the connected component of the unity of ker(p). It is
an abelian subvariety of A.

(iv) For the dimension one has
dim (Im(¢)) + dim (ker(¢)°) = dim(A).
Remark 4.61 Warning: in general it is not true that the sequence of abelian groups
0 — ker(¢)(L) — A(L) — Im(o(L)) — 0

is exact. This holds, however, if L. = K.

4.3.4 Isomorphisms and isogenies

To study abelian varieties it is (as usual) important to have an insight into isomorphisms between
them. Very closely related to isomorphisms are homomorphisms which preserve the dimension of
the abelian variety. They are intensively used both in theory and in applications to cryptography.

Definition 4.62 We assume that .4, B are abelian varieties over K.

(i) The map ¢ € Hompg (A, B) is an isogeny if and only if Im(p) = B and ker(¢) is finite.
(ii) The morphism ¢ is an isomorphism if and only if there is a ¢y € Homg (B,.4) with
w o1 =1Idg and 1) o ¢ = Id 4. So necessarily one has ker(¢) = {0.4}.
(iii) The variety A is isogenous to B (A ~ B) if and only if there exists an isogeny in
Homg (A, B).
(iv) The variety A is isomorphic to B (A ~ B) if and only if there exists an isomorphism in
Hompg (.A, B)

Let ¢ € Homg (A, B) be dominant. By mapping f € K(B) to f o ¢ we get an injection ¢* of
K (B) into K (A) (cf. Remark 4.45).

Proposition 4.63 The homomorphism ¢ € Homp (A, B) is an isogeny if and only if dim(.A) =
dim(B) and dim (ker(p)°) = 0.
Equivalently we have that ¢ is dominant and K (A) is a finite algebraic extension of ¢* (K (B)).
The relations ~ and ~ (cf. Corollary 4.76) are equivalence relations between abelian varieties.
Hence we can speak about (K -)isogeny classes (resp. (K -)isomorphism classes) of abelian varieties
over K.
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Definition 4.64 Let ¢ be an isogeny from A to B. The degree of ¢ is defined as [K (A) : o* (K (B))].

The isogeny ¢ is called separable if and only if K (A)/¢* (K (B)) is a separable extension. It is
called (purely) inseparable if K(A)/¢* (K (B)) is purely inseparable. In this case ker(p) = {0}
but nevertheless ¢ is not an isomorphism in general.

As for abelian groups we can describe the abelian varieties that are isomorphic to a homomorphic
image of A.

Let C be a closed set (with respect to the Zariski topology) in .A with C(K) a subgroup of A(K).
Then there exists an (up to K -isomorphisms unique) abelian variety B defined over K and a unique
7 = m¢ € Homg (A, B) such that

o Im(m) = B,
« ker(m) = C and
« K(A)/7*(K(B)) is separable.

Definition 4.65 With the notation from above we call B =: A/C the quotient of A modulo C.
Hence, B(K) = A(K)/C(K).

For general homomorphisms ¢ € Homg (A, B) we get:

¥ = 1/) © Tker(p)

where 1) is a purely inseparable isogeny from A/ ker () to Im(¢p).
Hence we can classify all abelian varieties defined over K that are separably isogenous to 4 up
to isomorphisms:

Proposition 4.66 The K -isomorphism classes of abelian varieties that are K -separably isogenous
to A correspond one-to-one to the finite subgroups C' C A(K) that are invariant under the action of
Gk They are isomorphic to A/C. The field K (A) is a separable extension of 7* (K (A/C)), which
is a Galois extension with Galois group canonically isomorphic to C": the automorphisms of K (.A)
fixing 7* (K (A/C)) are induced by translation maps ¢tp with P € ker(m), ie., 7*(K(A/C))
consists of the functions on .4 that are invariant under translations of the argument by points in C'.

To describe all abelian varieties that are K -isogenous to .A we have to compose separable isogenies
with purely inseparable ones. As seen the notion of finite subgroups of A(K) is not sufficient for
this; we would have to go to the category of group schemes to repair this deficiency. This is beyond
the scope of this introduction. For details see e.g., [MUM 1974, pp. 93].

For our purposes there is a most prominent inseparable isogeny, the Frobenius homomorphism.
Assume that char(K) = p > 0. We recall that we have defined the Frobenius morphism ¢,, (cf.
Example 4.39) for varieties over K. It is easily checked that ¢, (.A) is again an abelian variety over
K. By the description of ¢, it follows at once that ¢, is a purely inseparable isogeny of degree
pdim(A) and its kernel is {0}.

Now we consider the special case that B = A.
Definition 4.67 The homomorphisms Endx (A) := Homg (A, A) are the endomorphisms of A.

The set End g (A) is a ring with composition as multiplicative structure.

Example 4.68 Assume that K = IF,. Then ¢, induces the identity map on polynomials over K
and so ¢p,(A) = A. Therefore, ¢, € Endg (A). It is called the Frobenius endomorphism.

A slight but important generalization is to consider K = F, with ¢ = p?. Then Qg = ¢g’ is
the relative Frobenius automorphism fixing K element wise. We can apply the considerations made
above to ¢, and get a totally inseparable endomorphism of A of degree pdim(A) which is called
the (relative) Frobenius endomorphism of A.
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To avoid quotient groups we introduce a further definition.

Definition 4.69 An abelian variety is simple if and only if it does not contain a proper abelian
subvariety.

Assume that A is simple. It follows that ¢ € Homg (A, B) is either the zero map or has a finite
kernel, hence its image is isogenous to .A.

Proposition 4.70 If A is simple then End (A) is a ring without zero divisors and End ¢ (A)Y :=
Endg(A) @ Qis a skew field.

One proves by induction with respect to the dimension that every abelian variety is isogenous to the
direct product of simple abelian varieties. So we get

Corollary 4.71 Endg (A)° is isomorphic to a product of matrix rings over skew fields.

4.3.5 Points of finite order and Tate modules

We come to most simple but important examples of elements in End g (A).
For n € N define

n]: A— A
as the (n — 1)-fold application of the addition @ to the point P € A. For n = 0 define [0] as
zero map, and for n < 0 define [n] := —[|n|]. By identifying n with [n] we get an injective

homomorphism of Z into End x (A).

By definition [n] commutes with every element in Endy (A) and with Gk and so lies in the
center of the Gi-module End i (A).

The kernel of [n] is finite if and only if n # 0. Hence [n] is an isogeny for n # 0. It is an
isomorphism if |n| = 1.

Definition 4.72 Letn € N.

(i) The kernel of [n] is denoted by .A[n].
(ii) The points in .A[n] are called n-torsion points.

(iii) There exists a homogeneous ideal defined over K such that .A[n](K) is the set of points
on A(K) at which the ideal vanishes. It is called the n-division ideal.

For the latter we recall that A is a projective variety with a fixed embedding into a projective space.
For elliptic curves (cf. Section 4.4.2.a) which are abelian varieties of dimension one the n-division
ideal is a principal ideal. The generating polynomial is called the n-division polynomial. We will
give the division polynomials explicitly in Section 4.4.5.a together with a recursive construction.
A fundamental result is

Theorem 4.73 The degree of [n] is equal to n” dim(A) The isogeny [n] is separable if and only if n
is prime to char(K’). In this case A[n](K) ~ (Z/nZ)? (A If n = p* with p = char(K) then
Al[p*l(K) = Z/p**7Z with t < dim(A) independent of s.

A proof of these facts can be found in [MUM 1974, p. 64].

Definition 4.74 Let p = char(K).
(i) The variety A is called ordinary if A[p*](K) = Z/p**7Z with t = dim(A).
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(i) If A[p*](K) = Z/p'*7Z then the abelian variety A has p-rank t.

(iii) If A is an elliptic curve, i.e., an abelian variety of dimension 1 (cf. Section 4.4.2.a), it is
called supersingular if it has p-rank 0.

(iv) The abelian variety A is supersingular if it is isogenous to a product of supersingular
elliptic curves.

Remark 4.75 If an abelian variety A is supersingular then it has p-rank 0. The converse is only true
for abelian varieties of dimension < 2.

Corollary 4.76 Let o be an isogeny from A to 5 of degree n = Hle Ef with ¢; primes.

(1) There is a sequence (; of isogenies from abelian varieties A; to A; 1 with 4; = A and
As 1 = Bwith deg(p;) = ¥ and o = @y 0 01 100 y.
(i) Assume that n is prime to char(K). Let B, = ¢(A[n](K)). Then B,, is G k-invariant,
B/ B, is isomorphic to A and 5, o ¢ = [n].
(iii) If A is ordinary then taking ¢ = ¢,
[p] = ép © Talp) = T, (Alp]) © Pp-

Example 4.77 Assume that K = I, and that A4 is an ordinary abelian variety over K. Then there
is a uniquely determined separable endomorphism V,, € Endk (A) called Verschiebung with

[Pl =dpoVy=Vyo06,
of degree p1i™(A) | where @, 1s the absolute Frobenius endomorphism
Corollary 4.78 Let ¢ be a prime different from char(K) and k € N. Then
[(JA[EFT1] = A[¥).
We can interpret this result in the following way: the collection of groups
AR AR,

forms a projective system with connecting maps [¢!] and so we can form their projective limit
liLnA[ék]. The reader should recall that the system with groups Z/¢*Z has as projective limit
the /-adic integers Z, (cf. Chapter 3). In fact there is a close connection:

Definition 4.79 Let /¢ be a prime different from char(K). The ¢-adic Tate module of A is
Ty(A) := lim A[("].

Corollary 4.80 The Tate module Ty(.A) is (as Z¢-module) isomorphic to Z? dim(A),

4.3.6 Background on /-adic representations

The torsion points and the Tate modules of abelian varieties are used to construct most impor-
tant representations. The basic fact provided by Proposition 4.73 is that for all n € N prime to
char(K) the groups A[n](K) are free Z/nZ-modules and for primes ¢ different from char(K)
the Tate modules T (.A) are free Z,-modules each of them having rank equal to 2 dim(.4). Hence
Autg (A[n]), respectively Autz, (T¢(A)), can be identified (by choosing bases) with the group
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of invertible 2 dim(.A) x 2 dim(.A)-matrices over Z/nZ, respectively Z,. Likewise one can iden-
tify Endg (A[n]) and Endz, (T¢(A)) with the 2dim(A) x 2 dim(A)-matrices over Z/nZ or Zi,
respectively.

The first type of these representations relates the arithmetic of K to the arithmetic of A via Galois
theory. This will become very important in the case that K is a finite field or a finite algebraic
extension of either Q or a p-adic field Q).

The Galois action of G'rc on A(K) maps A[¢¥] into itself and extends in a natural way to T (.A).
Hence both the groups of points in .A[n] and in Ty(.A) carry the structure of a G -module and so
they give rise to representations of G k.

Definition 4.81 For a natural number n prime to char(K) the representation induced by the action
of Gk on A[n] is denoted by p4 .

For primes ¢ prime to char(K) the representation induced by the action on 7(.A) is denoted by
pA, ¢ and is called the ¢-adic Galois representation attached to A.

Second, we take ¢ € Endg (A). It commutes with [n] for all natural numbers and so it operates
on Ty(A) continuously with respect to the ¢-adic topology. Let Ty(¢) denote the corresponding
element in Endg, (Ty(A)).

With the results about abelian varieties we have mentioned already, it is not difficult to see that
the set of points of /-power order in A(K) is Zariski-dense, i.e., the only Zariski-closed subvariety
of A containing all points of {-power order is equal to A itself.

It follows that T; () = 0 if and only if ¢ = 0 and so we get an injective homomorphism 7 from
Endg (.A) into EndZe (Tg (.A)) .

Much deeper and stronger is the following result:

Theorem 4.82 We use the notation from above. The Tate module, 7, induces a continuous Z;-
module monomorphism, again denoted by 7}, from Endz, (T4(A)) ®z Z¢ into Endz, (T¢(A)).

For the proof see [MUM 1974, pp. 176].

It follows that Endg (A) is a free finitely generated Z-module of rank < (2 dim(A))2 and so
Endg(A) ® Q is a finite dimensional semisimple algebra over Q. There is an extensive theory
about such algebras and a complete classification. For more details see again [MUM 1974, pp-
193].

Moreover we can associate to ¢ the characteristic polynomial

X(Te(@))(T) == det(T — Te(y)),

which is a monic polynomial of degree 2 dim(.A) with coefficients in Z, by definition.
But here another fundamental result steps in:

Theorem 4.83 The characteristic polynomial x (77(¢))(T') does not depend on the prime number
£ and has coefficients in Z, hence it is a monic polynomial of degree 2 dim(.A) in Z[T].

For the proof see [MUM 1974, p. 181].
Because of this result the following definition makes sense.

Definition 4.84 Let ¢ be an element in Endg (A). The characteristic polynomial ()4 (T') is
equal to the characteristic polynomial of T} () for any ¢ different from char(K).

Corollary 4.85 We get
deg() = x(0).4(0)
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and more generally
deg([n] —¢) = x(¥)a(n).

For n prime to char(K) the restriction of ¢ to .A[n] has the characteristic polynomial

x(p)a(T)  (mod n).

There is an important refinement of Theorem 4.82 taking into account the Galois action. As seen G i
is mapped into Endy, (Tg (A)) by the representation p 4, ¢. By definition the image of Ty commutes
with the image of p 4, ¢ and hence we get:

Corollary 4.86 Moving to the Tate module 7} induces a map from End (A) to Endz, ¢ ) (T (A)).

Example 4.87 Let K = I, and let .4 be an abelian variety defined over K.

The Frobenius automorphism of K has a Galois ¢-adic representation p 4, ¢(¢,) and a representa-
tion as endomorphism of A in Endz, (T;(A)). By the very definition both images in Endz, (T;(.A))
coincide.

It follows that the endomorphism ¢,, attached to the Frobenius automorphism of K commutes
with every element in End g (A).

Moreover its characteristic polynomial x(¢,).4(T') is equal to the characteristic polynomial of
pA,e(¢p) for all £ prime to char(K).

For n prime to char(K), the kernel of [n] — ¢, has order x(¢p).4(n).

4.3.7 Complex multiplication

The results of the section above are the key ingredients for the study of End g (A).
For instance, it follows for simple abelian varieties .A that a maximal subfield F' of Endx (A)@Q
is a number field of degree at most 2 dim(.A4) over Q, cf. [MUM 1974, p. 182].

Definition 4.88 A simple abelian variety A over K has complex multiplication if Endg (A) ® Q
contains a number field F' of degree 2 dim(.A) over Q.

If an F' of this maximal degree exists then it has to be a field of CM-type. That means that it is a
quadratic extension of degree 2 of a totally real field Fy (i.e., every embedding of F{ into C lies in
R), and no embedding of F into C is contained in R. Therefore, F = Endx (A) @ Q.

If K is a field of characteristic 0 we get more:

Proposition 4.89 Let K be a field of characteristic 0. Let .4 be a simple abelian variety defined
over K with complex multiplication. Then Endk (A) ® Q is equal to a number field F' of degree
2 dim(.A) which is of CM-type. The ring End g (A) is an order (cf. Definition 2.81) in F'.

Example 4.90 Let K be a field of characteristic 0 and let E' be an elliptic curve over K (cf. Sec-
tion 4.4.2.a). Then either Endx (E) = {[n] | n € Z} or E has complex multiplication and
Endg (FE) is an order in an imaginary quadratic field. In either case the ring of endomorphisms
of E' is commutative.

The results both of the proposition and of the example are wrong if char(K) > 0.

For instance, take a supersingular curve E defined over a finite field IF,,> (cf. Definition 4.74).
Then the center of Endy , (£) ® Q is equal to Q, and Endr , (') ® Q is a quaternion algebra over
an imaginary quadratic number field F' (in fact there are infinitely many such quadratic number
fields). Hence E has complex multiplication but End]sz (F) ® Q is not commutative and not an
order in F'.
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Remark 4.91 For elliptic curves (cf. Section 4.4.2.a) it is a strong requirement to have complex
multiplication. If K has characteristic 0 we shall see that E' has to be defined over a number field
K, and its absolute invariant jr which will be defined in Corollary 4.118 has to be an algebraic
integer in K (satisfying more conditions as we shall see in Theorem 5.47).

If char(K') = p > 0 anecessary condition is that j g lies in a finite field. After at most a quadratic
extension of K this condition becomes sufficient.

4.4 Arithmetic of curves

From now on we concentrate on curves.

4.41 Local rings and smoothness

Definition 4.92 Let P be a point on an affine curve C. The set of rational functions that are regular
at P form a subring Op of K(C).
In fact, Op is a local ring with maximal ideal

mp ={f € Op| f(P)=0}

It is called the local ring of P.
The residue field of P is defined as Op/mp.

One has K(P) = Op/mp, hence, deg(P) = [K(P) : K].

For § C C define Og := (\pcg Op. Itis the ring of regular functions on S. If S is closed then
O is the localization of K[C] with respect to the ideal defining S.

A rational function r on C' is a morphism if and only if r € O¢c = K[C].

For a projective curve, the ring of rational functions on C' that are regular at P is equal to Op,
the local ring of P in a nonempty affine part of C.

Definition 4.93 Let P € C for a projective curve C. The point P is nonsingular if Op is integrally
closed in K (C'). Otherwise the point is called singular. A curve is called nonsingular or smooth if
every point of C'(K) is nonsingular.

A smooth curve satisfies that K[C,] is integrally closed in K (C) for any choice of Cy. If C' is
projective but not smooth we take an affine covering C; and define C; as affine curve corresponding
to the integral closure of K[C;]. By the uniqueness of the integral closure we can glue together the
curves C; to a projective curve C called the desingularization of the curve C'. Note that in general
even for C' a plane curve, C' shall not be plane.

There is a morphism ¢ : C — C thatis a bijection on the nonsingular points of C. Hence
projective smooth curves that are birationally equivalent are isomorphic.

Therefore, irreducible projective nonsingular curves are in one-to-one correspondence to function
fields of dimension 1 over K.

To have a criterion for smoothness that can be verified more easily we restrict ourselves to affine
parts of curves.

Lemma 4.94 (Jacobi criterion) Let C; C A™ be an affine curve, let f1,..., f4 € K[x] be gener-
ators of I(C,), and let P € C,(K). If the rank of the matrix ((9f;/dx;)(P)), ; is n— 1 then the

curve is nonsingular at P.
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Using this lemma one can show that there are only finitely many singular points on a curve.
For a nonsingular point P the dimension of mp/m% is one. Therefore, the local ring Op is a
discrete valuation ring.

Definition 4.95 Let C be a curve and P € C be nonsingular. The valuation at P on Op is given by
vp:Op —{0,1,2,...}U{co}, vp(f) =max{i € Z | f € mb}.

The valuation is extended to K (C') by putting vp(g/h) = vp(g) — vp(h). The value group of vp
is equal to Z.

The valuation vp is a non-archimedean discrete normalized valuation (cf. Chapter 3).

A function ¢ with v(¢t) = 1 is called uniformizer for C at P.

Let P, and P, be nonsingular points. Then vp, = vp, if and only if P} € G - Ps.

Example 4.96 Let C = P'/K and choose P € A'. Let f € K(x). The value vp(f) of f at
P = (a) € K equals the multiplicity of a as a root of f. If a is a pole of f, the pole-multiplicity is
taken with negative sign as it is the zero-multiplicity of 1/ f.

This leads to a correspondence of Galois orbits of nonsingular points of C' to normalized valua-
tions of K (C) that are trivial on K. For a nonsingular curve this is even a bijection. Namely, to
each valuation v of K (C') corresponds a local ring defined by O, := {f € K(C) | v(f) > 0}
with maximal ideal m,. If C' is smooth, there exists a maximal ideal M, C K[C,], where C,, is
chosen such that K[C,;] C O,, satisfying O, = O,. Over the algebraic closure there exist points
P, ..., Py such that O, equals Op, and the P; form an orbit under Gx. The degree of M, is
[K[C.)/M, : K] = [O,/m, : K]. Itis equal to the order of G - P; of one of the corresponding
points on C.

Two valuations of vy, vy of K(C) are called equivalent if there exists a number ¢ € R with
V1 = CU2.

Definition 4.97 The equivalence class of a valuation v of K (C') which is trivial on K is called a
place p of K(C). The set of places of I'/K is denoted by ¥/ .

In every place there is one valuation with value group Z. It is called the normalized valuation of
p and denoted by vj.

We have seen:

Lemma 4.98 Let F'// K be a function field and let C'/ K be a smooth projective absolute irreducible
curve such that F' ~ K (C') with an isomorphism ¢ fixing each element of K.

There is a natural one-to-one correspondence induced by ¢ between the places of F'/ K and the
Galois orbits of points on C.

Example 4.99 Consider the function field K (x1) with associated smooth curve P! /K and affine
coordinate ring K [z;]. The normalized valuations in ¥ k(¢ x for which the valuation ring contains
K [x1] correspond one-to-one to the irreducible monic polynomials in K[z1]. There is one additional
valuation with negative value at z;, called v, which is equal to the negative degree valuation,
corresponding to the valuation at p..(t) = ¢ in K[t] = K[1/21]. Geometrically v, corresponds to
PN AL
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4.4.2 Genus and Riemann—Roch theorem

We want to define a group associated to the points of a curve C.

Definition 4.100 Let C/ K be a curve. The divisor group Dive of C is the free abelian group over
the places of K(C)/K. Anelement D € Divc is called a divisor. It is given by

D = Y nmp,

Pi€XK(C)/K

where n; € Z and n; = 0 for almost all 7.
The divisor D is called a prime divisor if D = p with p a place of K(C)/K.
The degree deg(D) of a divisor D is given by

deg : Dive — Z
D — deg(D) = Z n; deg(p;).

Pi€XK(C)/K

A divisor is called effective if all n; > 0. By F > D one means that E© — D is effective.
For D € Div¢ put

Dy = Z nip; and D, = Z —1;Pi,

Pi€SK(C)/ K Pi€YK(C)/K
n; =0 n; <0

thus D = Dy — D..

Recall that over K each place p; corresponds to a Galois orbit of points on the projective nonsingular
curve attached to K (C). Thus, D can also be given in the form

D = Z TLZ‘Pi

PeC

withn; € Z, almostall n; = 0and n; =n; if P, € P; - Gg.

Assume now that C is absolutely irreducible. Then we can make a base change from K to K. As
a result we get again an irreducible curve C - K (given by the same equations as C' but interpreted
over K) with function field K(C) - K.

Applying the results from above we get

DiVC.? = { Z TLZ‘PZ‘}

P;eC

with n; € Z and almost all n; = 0. For all fields L between K and K the Galois group G, operates
by linear extension of the operation on points.

Proposition 4.101 Assume that C'/ K is a projective nonsingular absolutely irreducible curve. Let
L be a field between K and K and denote by Dive.y, the group of divisors of the curve over L
obtained by base change from K to L. Then

Dive., ={D € Div % | 0(D) = D, forallo € G }.

Gk

Especially: Divg = Divcf .
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Important examples of divisors of C' are associated to functions. We use the relation between nor-
malized valuations of K (C) which are trivial on K and prime divisors.

Definition 4.102 Let C'/K be acurve and f € K(C)*. The divisor div(f) of f is given by

div: K(C) — Dive
fomodiv(f) = ) (e

Pi€XK(C)/ K

A divisor associated to a function is called a principal divisor. The set of principal divisors forms a
group Princc.
We have a presentation of div(f) as difference of effective divisors as above:

div(f) = div(f)o — div(f)eo-

The points occurring in div(f)o (resp. in div(f)) with nonzero coefficient are called zeroes (resp.
poles) of f.

Example 4.103 Recall the setting of Example 4.99 for the curve C' = P!. Since polynomials of
degree d over fields have d zeroes (counted with multiplicities) over K we get immediately from
the definition:

deg(f) =0, forall f € K(x1)*.

Now let C' be arbitrary. Take f € K(C)*. For constant f € K* the divisor is div(f) = 0.
Otherwise K (f) is of transcendence degree 1 over K and can be interpreted as function field of
the projective line (with affine coordinate f) over K. By commutative algebra (cf. [ZASA 1976])
we learn about the close connection between valuations in K (f) and K (C), the latter being a finite
algebraic extension of K (f). Namely, div(f) is the conorm of the negative degree valuation on
K (f) and hence has degree [K (C') : K(f)] (cf. [STI 1993, p. 106]).

Since div(f)o = div(f 1) we get:

Proposition 4.104 Let C be an absolutely irreducible curve with function field K (C) and f €
K(C)*.
(i) deg(div(f)o) = Oif and only if f € K*.
(ii) If f € K(C)~ K then [K(C) : K(f)] = deg(div(f)oo) = deg(div(f)o)-
(iii) Forall f € K(C)* we get: deg(div(f)) = 0.
So the principal divisors form a subgroup of the group Div% of degree zero divisors.

To each divisor D we associate a vector space consisting of those functions with pole order at
places p; bounded by the coefficients n; of D.

Definition 4.105 Let D € Div. Define
L(D):={f e K(C)|div(f) = —D}.

It is not difficult to see that L (D) is a finite dimensional K -vector space. Put £(D) = dimg (L(D)).
The Theorem of Riemann—Roch gives a very important connection between deg(D) and ¢(D).
We give a simplified version of this theorem, which is sufficient for our purposes. The interested

reader can find the complete version in [STI 1993, Theorem 1.5.15].
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Theorem 4.106 (Riemann—Roch) Let C'/K be an absolutely irreducible curve with function field
K (C). There exists an integer g > 0 such that for every divisor D € Div¢

(D) > deg(D) — g+ 1.
For all D € Div¢ with deg(D) > 2g — 2 one even has equality /(D) = deg(D) — g + 1.

Definition 4.107 The number g from Theorem 4.106 is called the genus of K (C) or the geometric
genus of C. If C' is projective nonsingular then g is called the genus of C.

The Riemann—Roch theorem guarantees the existence of functions with prescribed poles and zeroes
provided that the number of required zeroes is at most 2g — 2 less than the number of poles. Namely,
if n; > 0 at p; then f € L(D) is allowed to have a pole of order at most n; at p;. Vice versa a
negative n; requires a zero of multiplicity at least n; at p;.

As an important application we get:

Lemma 4.108 Let C'/K be a nonsingular curve and let D = > n;p; be a K -rational divisor of C
of degree > g. Then there is a function f € K (C) which has poles of order at most n; (hence zeroes
of order at least —n; if n; < 0) in the points P; € C' corresponding to p,; and no poles elsewhere. In
other words: the divisor D + (f) is effective.

Example 4.109 For the function field K (x), Lagrange interpolation allows to find quotients of
polynomials for any given zeroes and poles. This leads to /(D) = deg(D) + 1. The curve P*/K
has genus 0.

The Hurwitz genus formula relates the genus of algebraic extensions F'/F/K. It is given in a
special case in the following theorem (cf. [STI 1993, Theorem II1.4.12] for the general case).

Theorem 4.110 (Hurwitz Genus Formula) Let F’/F be a tame finite separable extension of alge-
braic function fields having the same constant field K. Let g (resp. g’) denote the genus of F'/K
(resp. F'/K). Then

29 —2=[F:F](29—2) > Y (e(®'lp) — 1) deg(p’).

PEXE /K P'|p

One of the most important applications of the Riemann—Roch theorem is to find affine equations for
a curve with given function field. We shall demonstrate this in two special cases which will be the
center of interest later on.

4.4.2.a Elliptic curves

Definition 4.111 A nonsingular absolutely irreducible projective curve defined over K of genus 1
with at least one K -rational point is called an elliptic curve.

Let C be such a smooth absolutely irreducible curve of genus 1 with at least one K -rational point
P, and let F// K be its function field. As {(P,) = 1 we have thus L(Py) = K.

Theorem 4.106 guarantees ¢(2P,;) = 2, hence there exists a function z € F' such that {1,z}isa
basis of L(2P,) over K. There also exists y € F such that {1, z, y} is a basis of L(3P,) over K.
We easily find that {1, z,y, 2} is a basis of L(4Px,) and that L(5Px,) has basis {1, z,y, 2%, xy}.

The space L(6Py) D ({1,z,y, 2%, xy, 23, y*}) has dimension six, hence there must be a linear
dependence between these seven functions. In this relation %2 has to have a nontrivial coefficient
a. By multiplying the relation with a and by replacing 3 by a~'y we can assume that a = 1. The
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function > has to appear nontrivially, too, with some coefficient b. Multiply the relation by b2 and
replace x by b~ 'z, y by b~ 'y. Then the coefficients of 4% and x> are equal to 1 and we get a relation

3

v + ar1zy + azy — 1° — aga’

—aqx — ag, a; € K.

This is the equation of an absolutely irreducible plane affine curve. It is a fact (again obtained by
the use of the theorem of Riemann-Roch) that this curve is smooth.
The projective closure C' of C'is given by

Y2Z 4+ a XYZ +a3YZ? — X3 — a9 X?Z —au X 7° — a6 Z®, a; € K

with plane projective coordinates (X : Y : Z). One sees at once that C~C = {(0: 1 :0)} and
that P, := (0 : 1 : 0) is smooth. Hence C is a nonsingular absolutely irreducible plane projective
curve of genus 1.

Again by using the Riemann—Roch theorem one can prove that the converse holds, too. The projec-
tive curve given by

Y2Z 4+ XYZ +a3YZ? — X3 — a9 X?Z — au X 7% — a6Z>, a; € K

is a curve of genus 1 if and only if it is smooth.
We have seen that the Riemann—Roch theorem yields

Theorem 4.112 A function field F// K of genus 1 with a prime divisor of degree 1 is the function
field of an elliptic curve E. This curve is isomorphic to a smooth plane projective curve given by a
Weierstraf3 equation

E:Y?’Z+aXYZ+a3sYZ? - X3 —asX?Z —ayXZ% — a6 73, a; € K.

A plane nonsingular affine part £, of E is given by

3

y2+a1xy+a3y—x —ang—a4x—a6, a; € K.

E \ E, consists of one point with homogeneous coordinates (0 : 1 : 0).

Conversely nonsingular curves given by equations
E:Y’Z+aXYZ+asYZ? - X2 —aoX?Z — auXZ? — agZ®, a; € K
have function fields of genus 1 with at least one prime divisor of degree 1 and so are elliptic curves.

In the remainder of the book F will be a standard notation for an elliptic curve given by a Weierstral3
equation, and we shall often abuse notation and denote by E the affine part £, too. Since elliptic
curves are one of the central topics of this book we use the opportunity to study their equations in
more detail.

Short normal forms and invariants
Let E be an elliptic curve defined over K with affine Weierstrall equation

E:y* +arzy + azy = 2° + axx® + aqx + ag.

We shall simplify this equation under assumptions about the characteristic of K. To achieve this we
shall map (z,y) to (2',y’) by invertible linear transformations. These transformations correspond
to morphisms of the affine part of E to the affine part of another elliptic curve E’, and since the
infinite point remains unchanged we get an isomorphism between E and E’. Having done the
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transformation we change notation and denote the transformed curve by E with coordinates (x, y)
again.
First assume that the characteristic of K is odd. We make the following transformations

1
z—a' =z and yHy’=y+§(‘“‘”+a_23)'

The equation of F expressed in the coordinates (', y") and then, following our convention to change
notation and to write z for 2’ and y for 3/ is:
b ba be
E:y? =2+ =2+ o+
Y 1 2"
where by, = a% + 4as, by = 2a4 + a1a3 and bg = a% + 4ag.
Now we assume in addition that the characteristic of K is prime to 6. We transform

b
x»—>x’:x+1—z and y—1y' =y
and — applying our conventions — get the equation

where c4 and cg are expressed in an obvious way in terms of bo, by, bg as
Cq = bg —24bs, and c¢g = —bg + 36baby — 216bg.

So if char(K) is prime to 6, we can always assume that an elliptic curve is given by a short Weier-
straf3 equation of the type

y2 =23 + a4 + ag.
Next we have to decide which Weierstrall equations define isomorphic elliptic curves. We can and
will restrict ourselves to isomorphisms that fix the point at infinity, i.e., we fix one rational point on
E or equivalently we fix one place of degree 1 in the function field of E, which is the place Py,
used when we derived the equation in Section 4.4.2.a.

To make the discussion not too complicated we shall continue to assume that the characteristic of
K is prime to 6 and so we have to look for invertible transformations of the affine coordinates for
which the transformed equation is again a short Weierstral3 equation.

So let E be given by

E:y? =2° + ayz + ag.
One sees immediately that the conditions imposed on the transformations imply
z—a =u2z and y—y =uy
with v € K*, and that the resulting equation is
E'y? =23 + utage + uba.

Proposition 4.113 Assume that the characteristic of K is prime to 6 and let £ be an elliptic curve
defined over K. Let E be given by a short Weierstraf} equation

E:y? =2+ ayr + ag.
o If a4 = 0O then the coefficient of z is equal to O in all short Weierstral} equations for F,

and ag is determined up to a sixth power in K *.

« If ag = 0 then the absolute term in all short Weierstra3 equations for F is equal to 0 and
a4 is determined up to a forth power in K*.

o If adae # 0 then ag /a4 is determined up to a square in K*.
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Conversely:

o If a4 = 0 then E is isomorphic to E’ if in a short Weierstra form of E’ the coefficient
aly of x is equal to 0 and ag/ag is a sixth power in K*.
« If ag = 0 then E is isomorphic to E’ if in a short WeierstraB form of E’ the absolute
term is equal to 0 and a/y /a4 is a fourth power in K*.
o If agag # 0 then E is isomorphic to E’ if in a short WeierstraB form of £’ we have:
there is an element v € K* with a) = v2a4 and ag = v3ag.
Corollary 4.114 Assume that the characteristic of K is prime to 6 and let E be given by a short
Weierstrall equation
E:y2:x3+a4x+a6.

« If ay = 0 then for every ag € K* the curve E is isomorphic to
E' :y?=2°+ay over K((ag/ag)'").
« If ag = 0 then for every ay € K* the curve E is isomorphic to
E':y?=2°+ajx over K((as/d))?).

o If ayag # O then for every v € K™ the curve E is isomorphic to

E, :y* = 2® + djx + af with ), = v?ay and af = v3ag over K(/v).

The curves occurring in the Corollary are called twists of E. The curves E, are called quadratic
twists of E. Note that E is isomorphic to E,, over K if and only if v is a square in K*. Therefore
up to isomorphisms there is only one quadratic twist of a curve with a4ag # 0.

We want to translate the results of the proposition and of the lemma into “invariants” of F that
can be read off from any Weierstral} equation.

Recall that a crucial part of the definition of elliptic curves was that the affine part has no singular
points. This is translated into the condition that the discriminant of the equation of F is not equal to
0. This discriminant is a polynomial in the coefficients a;, which is particularly easy to write down
if we have a short Weierstra3 equation. So let E be given by

E:y? =2+ asx+ag == f(x).

Definition 4.115 The discriminant A of E is equal to the polynomial discriminant of f(z) which
is (up to a sign) the product of the differences of the zeroes of f (), which we endow with a constant
for historical reasons:

Ap = —16(4a3 + 27a?).

We note that this definition is to be taken with caution: it depends on the chosen Weierstral3 equation
and not only on the isomorphism class of E. To make the discriminant well defined we have to
consider it modulo 12-th powers in K*.

To get an invariant of the isomorphism class of F we use the transformations of a4, ag, and Ag
under transformations of Weierstral3 forms.

Definition 4.116 The absolute invariant (sometimes called j-invariant) jz of E is defined by

—4a3
ip=125—4
.]E AE
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Lemma 4.117 Assume that the characteristic of K is prime to 6 and let F/ be given by a short
Weierstrall equation

E:y2:x3+a4x+a6.
The absolute invariant jr depends only on the isomorphism class of E.
(i) We have jr = 0 if and only if a4 = 0.
(ii) We have jp = 123 if and only if ag = 0.
(iii) If j € K is not equal to 0, 123 then E is a quadratic twist of the elliptic curve

27§ 27§
E;i:y?=2%— =
T R R TV b))

Corollary 4.118 Assume that the characteristic of K is prime to 6. The isomorphism classes of
elliptic curves F over K are, up to twists, uniquely determined by the absolute invariants jr, and
for every 7 € K there exists an elliptic curve with absolute invariant j.

If K is algebraically closed then the isomorphism classes of elliptic curves over K correspond
one-to-one to the elements in K via the map E' — jg.

Of course it is annoying that we have to restrict ourselves to fields whose characteristic is prime to 6.
In fact this is not necessary at all; completely analogous discussions can be done for characteristics
2 and 3 and can be found in [SIL 1986] and also in Chapter 13.

We give a very short sketch of the discussions there.

We start with a general Weierstrall equation for E over a field with odd characteristic.

E: y2—|—a1xy—|—a3y =73 +a2x2 + a4z + ag,

and recall the definitions of by = a% + 4aq, by = 2a4 + a1a3, bg = a% + 4ag, and ¢4 = b% — 24by.
In addition we define

2 2 2
bs = ajas — arasas + 4azae + azaz — ay.

Definition 4.119 The discriminant of £ is
Ap := —b3bg — 8b5 — 27bZ + 9babsbg

and the absolute invariant of E is

If the characteristic of K is equal to 2 one also finds normal forms for E' (cf. Section 13.3). Either
a1 = 0 and then jr := 0. Otherwise we can find an equation for F with a3 = a4 = 0 and a; = 1.
Then jr = ag L

We summarize the definitions in Table 4.1. Using these extra considerations one easily sees
that the conclusions of Corollary 4.118 hold without any restrictions about the characteristic of the
ground field.

Theorem 4.120 Let K be a field. The isomorphism classes of elliptic curves E over K are, up
to twists, uniquely determined by the absolute invariants jg, and for every j € K there exists an
elliptic curve E with absolute invariant j5 = j.

If K is algebraically closed then the isomorphism classes of elliptic curves over K correspond
one-to-one to the elements in K via the map F — jg.
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Table 4.1 Short Weierstraf3 equations.

‘ char K ‘ Equation ‘ A j ‘
#2,3 y? =23 + asx + ap —16(4a3 + 27a2) 1728a3/4A
3 y?2 =22 + aqx + ag —ai 0
3 y? =23 + agx® + ag —ajag —a3/ag
2 Y2 + azy = 2% + asx + ag as 0
2 Y2 + zy = 2% + asx? + ag ag 1/ag

4.4.2.b Hyperelliptic curves

Definition 4.121 A nonsingular curve C'//K of genus g > 1 is called a hyperelliptic curve if the
function field K (C) is a separable extension of degree 2 of the rational function field K () for some
function x. Let w denote the nontrivial automorphism of this extension. It induces an involution w,
on C' with quotient P!. The fixed points P, ..., Pyy o of w, are called Weierstraf3 points.

From a geometrical point of view, C' is a hyperelliptic curve if there exists a generically étale
morphism 7 of degree 2 to P'. The WeierstraB points are exactly the points in which 7 is ramified.

Classically, elliptic curves are not subsumed under hyperelliptic curves. The main difference is that
for g > 1 the rational subfield of index 2 is unique. That implies that the function x is uniquely
determined up to transformations

b with a,b,c,d € K and ad — bc # 0.
cr+d

For elliptic curves this is wrong. If, for instance, K is algebraically closed then there exist infinitely
many rational subfields of index 2. In this book we will often consider elliptic curves as hyperelliptic
curves of genus one since most of the arithmetic properties we are interested in are the same.

We now use the Riemann—Roch theorem to find an equation describing a plane affine part of C'.

The definition implies that there exists a divisor D of degree 2, which is the conorm of the
negative degree valuation on K (x) (cf. [STI 1993, p. 106]).

From the construction we have that L(D) has basis {1, 2} and, hence, {(D) =2. For1 < j < ¢
we have that £(jD) > 2j and the elements {1, x,...,27} are linearly independent in L(jD). As
deg((g+1)D) =2(g+ 1) > 2g — 2, Theorem 4.106 implies that

(((g+1)D) =deg((9+1)D) —g+1=g+3.

Hence, besides the g+2 elements 1, z, . .., 297 there must be a (g+3)-th functiony € L((g+1)D)
independent of the powers of x.
Therefore, y ¢ K|[xz]. The space L(2(g + 1)D) has dimension 3g + 3. It contains the 3g + 4
functions
La,...,2% gy, 292 gy, . 220D g9ty 42

Therefore there must exist a linear combination defined over K among them. In this relation 3?2
has to have some nontrivial coefficient a as y ¢ K[x]. By multiplying the relation with a and by
replacing y by a~'y we can assume that @ = 1.

This leads to an equation

y* + h(x)y = f(z), h(z), f(z) € K[z],
where deg(h) < g + 1 and deg(f) < 29 + 2.
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To determine the exact degrees we use the Hurwitz genus formula stated in Theorem 4.110. In our
case [K(C) : K(x)] = 2 and thus e(p’|p) < 2. To simplify we shall assume that the characteristic
of K is odd. After applying the usual transformation y — y — h(z)/2 we can assume that 2 (z) = 0.
Then the fixed points of w, are points with y-coordinate equal to O or are points lying over z = oc.
The latter case occurs if and only if D is a divisor of the form 2P, i.e., if there is only one point
P lying over co on the nonsingular curve with function field K (C'). Moreover the z-coordinates
of these points correspond to the places of K () which ramify in the extension K (C)/K (z).

By the genus formula the number of the ramified points has to be equal to 2g + 2. Hence f(x)
has to have 2¢ + 2 different zeroes if oo is not ramified, and 2¢g + 1 different zeroes if co is ramified.
As aresult we get: the degree of f(x) is equal to 2g + 2 if D = P; + P, with different P;, P and
equal to 2g + 1 if D = 2P,,, and f(x) has no double zeroes.

Moreover the affine curve given by the equation

Ca:y? + h(z)y = f(2), h(z), f(z) € Ka]
is nonsingular.

Theorem 4.122 A function field F/K of genus g > 1 with an automorphism w* of order 2 with
rational fixed field is the function field of a plane affine curve given by an equation

C:y” +h(x)y = f(z), h(z), f(z) € K[z], .1

where 2g + 1 < deg f < 29 + 2 and deg h < g + 1 without singularities.
Conversely the nonsingular projective curve birationally isomorphic to an affine nonsingular
curve given by an equation of this type is a hyperelliptic curve of genus g.

The homogenized equation has a singularity at infinity exactly if there is a single point in 71 (00)
and then the degree of f(x) is equal to 2g + 1. In this case we can achieve a monic f. Let b be the
leading coefficient. Multiplying the equation by 29 and replacing y + y /b9, x — x/b? we obtain

Co : y* + h(z)y = f(x) with h(x), f(z) € K[z],deg(f) = 29 + 1,deg(h) < g and f monic.

In the sequel we shall always characterize hyperelliptic curves by their affine plane parts and assume
them given by equations of the form (4.1).

Short WeierstraB equations

Later on we shall concentrate on the case that deg(f) = 2¢g + 1, i.e., curves having a K -rational
Weierstrall point. In this case we can simplify the equations analogously to the case of elliptic
curves. We distinguish between the case of K having odd or even characteristic.

Let C be a hyperelliptic curve of genus g defined over a field of characteristic # 2 by an equation
of the form (4.1) with deg(f) = 2g+ 1. The transformation y — y — h(x)/2 leads to an isomorphic
curve given by

C:y* = f(z),f € K[z] and deg(f) =29+ 1. 4.2)

The Jacobi criterion (cf. Lemma 4.94) states that C' is nonsingular if and only if no point on the
curve satisfies both partial derivative equations 2y = 0 and f’(z) = 0. The points with y = 0 are
just the points P; = (z;,0), where f(x;) = 0. The second condition shows that the singular points
are just the Weierstral points for which the first coordinate is a multiple root of f. Therefore, a
necessary and sufficient criterion for (4.2) to be nonsingular is that f has only simple roots over the
algebraic closure.

Let

2g
fl@) =21+ Y .

=0
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If additionally char(K) is coprime to 2g, the transformation x — x — faq/(2g) allows to give
f(.]?) = g29+! + ng_leg—l + -4 flx + f() with f,L c K.

Let C be a hyperelliptic curve of genus g over a field of characteristic 2. Assume first that h(x) = 0,
i.e., y? = f(x) like above.

The partial derivatives are 2y = 0 and f'(x). Any of the 2g + 1 roots xp of f’ can be extended to
apoint (zp, yp) satisfying y% = f(zp) and both partial derivatives. Hence, h(x) = 0 immediately
leads to a singular point and so we must have h(z) # 0.

4.4.2.c Differentials

We shall now give another application of the theorem of Riemann—Roch. For this we have to
introduce differentials. We shall do this in the abstract setting of function fields. If the ground field
K is equal to C this concept coincides with the “usual” notion of differentials known from calculus.
Let K(C) be the function field of a curve C' defined over K. To every f € K(C') we attach a
symbol df, the differential of f lying in a K (C)-vector space (K (C)), which is the free vector
space generated by the symbols df modulo the following relations.
For f,g € K(C) and A € K we have

R1) dAf+g9) = Mdf+dg

(R2) d(fg) = fdg+gdf.
Recall that a derivation of K (C') is a K-linear map
D:K(C)— K(C)

vanishing on K with

D(fg) = D(f)g+ D(g)f

Let z € K(C') be such that K (C) is a finite separable extension of K (x). Then there is exactly one
derivation D of K (C) with D(z) = 1 (cf. [ZASA 1976]) call this derivation the partial derivative
with respect to x and denote the image of f € K (C') under this derivation by 0 f /Jz.

The relation between derivations and differentials is given by the chain rule.

Lemma 4.123 (Chain rule) Let x be as above and f € K(C). Then df = (0f/0x)dx.

Corollary 4.124 The K (C)-vector space of differentials Q(K (C)) has dimension 1.
It is generated by dx for any = € K (C') for which K (C')/K (z) is finite separable.

Let P be a point on C. Take a uniformizer for C' at P, i.e., a function tp € K (C) that generates
the maximal ideal Mp of the place associated to P. So tp is a function that vanishes at P with
multiplicity 1. It follows that K (C')/K (tp) is finite separable.

Let w € Q(K(C)) be a differential of C. We attach a divisor div(w) = Y pc npP given
by the following recipe: for P € C' choose a uniformizer ¢tp and express w by w = fpdtp with
fp € K(C). Then

np =vp(fp).

Lemma 4.125 The sum div(w) = > pc npP defines a divisor of C that is independent of the
choice of the uniformizers ¢ p. The degree of div(w) is equal to 2g — 2.

For a proof of the lemma see [STI 1993].
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Definition 4.126 A differential w is holomorphic if div(w) is an effective divisor.

The set of holomorphic differentials of C' forms a K -vector space Q°(K (C)).
A consequence of the Riemann—Roch theorem is:

Theorem 4.127 The K-vector space QY (K (C)) has dimension g.
Example 4.128 Let E be an elliptic curve defined over K and given by an affine Weierstrall equa-
tion G(z,y) = 0, where

G(z,y) = > + arwy + asy — 2° — axx® — ayxr — ag, with a; € K.

The differential 1/(9G(z,y)/dy)dx is holomorphic, and up to a multiplicative constant it is the
unique holomorphic differential of E. Note that it has neither poles nor zeroes.

4.4.3 Divisor class group

In this section we shall attach an abelian group to each nonsingular curve starting from the group of
divisors as defined in Section 4.4.2. This construction will give us an intimate relation between the
arithmetic of curves and abelian varieties.

Let C'/K be an absolutely irreducible smooth projective curve. Let Div% denote the group of
K -rational divisors of C of degree 0.

Recall that principal divisors have degree zero and form a subgroup Princc C Div%.

Definition 4.129 The divisor class group Pic% of C of degree zero is the quotient of the group of
degree zero divisors Div% by the principal divisors. It is also called the Picard group of C.

Hence, two divisors Dy and D are in the same class if there exists an f € K(C) with div(f) =
Dy — Ds.

Example 4.130 Let w and w’ be two differentials of C that are not equal to 0. Then div(w) is in the
same class as div(w’).

In contrast to the group of divisors, the divisor class group has many torsion elements. If the field
K is finite, it is even a finite group.
We now give an example of how to deal with torsion elements.

4.4.3.a Divisor classes of order equal to char(K)

We assume that K is a field of characteristic p > 0. Let C be a projective absolutely irreducible
nonsingular curve of genus g defined over K. Let Pic% [p] be the group of divisor classes of C with
order dividing p.

In [SER 1958] we find the following result.

Proposition 4.131 There is a monomorphism « from Picl[p] into Q2°(C), the K -vector space of
holomorphic differentials on C' given by the following rule: choose a K-rational divisor D with
pD = div(f) where f is a function on C. Then the divisor class D of D is mapped under « to the
holomorphic differential (1/ f)df.

Note that (1/f)df is holomorphic since the multiplicity of the zeroes of f is divisible by p =
char(K). Next we choose a point Py € C(K). Let t be a uniformizer of C at P, (i.e.,t € K(C)
with t(Py) = 0 and 9f /0t(Py) # 0). We take (1/f)df as in the proposition and express it via the
chain rule in the form ((8f/8t)/f)dt. Let (ag, a1, ..., azg—2)(f) be the tuple whose coordinates
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are first coefficients of the power series expansion of (9f/0t)/f at Py and assume that there is
another holomorphic differential hdt with h having the same power series expansion as (0f/0t)/ f
modulo t29~1, Then (1/f)df — hdt is a holomorphic differential whose divisor has a coefficient
> 2g — 1 at Py and so its degree is > 2g — 1. But this implies that it is equal to 0 and so (1/f)df =
hdt.

Hence we get

Proposition 4.132 Let K be a field of characteristic p > 0 and C a curve of genus g defined over K.
For divisor classes D € Picl[p] choose a divisor D € D and take f € K (C) with pD = div(f).
The map

@ : Pick[p] K?~1

N
D — (ao,a1,...,az-2)(f)
is an injective homomorphism.

Remark 4.133 For applications later on we shall be interested mostly in the case that K is a finite
field IF,. Moreover, computational aspects will become important. If we want to use Proposition
4.132 in practice to identify Pic¢:[p](F,) with a subgroup of F29~1 we must be able to compute
the first coefficients of the power series expansion of (1/f)df at P, fast. The problem is that the
degree of f can be very large. Nevertheless this can be done in polynomial time (depending on g
and lg q). The method is similar to the one we shall use later on for computing the Tate pairing (see
Chapter 16) and so we refer here to [RUC 199g] for details.

4.4.4 The Jacobian variety of curves

We come back to a projective absolutely irreducible curve C defined over the field K and the study
of its divisor class group.
A first and easily verified observation is that G acts in a natural way on Pic%_? and that
. . G
PIC% = (PIC%.?) K
;vhereCPicocf is the divisor class group of degree 0 of the curve over K obtained by base change
rom C.

More generally, take any field L between K and K. Then Pic%, L= (Pic%?)GL

In the language of categories this means that for a fixed curve C, the Picard groups corresponding
to curves obtained from C' by base change define a functor Pic” from the set of intermediate fields
L between K and K to the category of abelian groups.

It is very important that this functor can be represented by an absolutely irreducible smooth
projective variety Jo defined over K. For all fields L between K and K we have that the functors
of sets L — Jo(L), the set of L-rational points of J¢, can be identified in a natural way with
L+ Pic ;.

But even more is true: Jo has the structure of an algebraic group. Since J¢ is projective and
absolutely irreducible this means that J¢ is an abelian variety.

In particular, this implies that Jo (L) is a group in which the group composition @ is given by
the evaluation of rational functions (if one takes affine coordinates) or polynomials (in projective
coordinates) with coefficients in K on pairs (P;, P») € Jco(L)2.

As a result we can introduce coordinates for elements in Pic% and compute by using algebraic
formulas.



78 Ch. 4 Background on Curves and Jacobians

Definition 4.134 The variety J¢ is called the Jacobian (variety) of C.

By using Theorem 4.106 we can give a birational description of J¢, which (essentially) proves its
existence and makes it accessible for computations. It is based on the following lemma.

Lemma 4.135 Let C'/ K be a nonsingular, projective, absolutely irreducible curve of genus g with a
K -rational point Po, corresponding to the place p. For every K -rational divisor class D of degree
0 of C there exists an effective divisor D of degree deg(D) = g such that D — gpo, € D.

Proof. Take any D’ € D with D’ = D; — D, as difference of two effective K -rational divisors. In
the first step we choose [ large enough so that ! — deg(D2) > g and by Lemma 4.108 find a function
f1 such that —Dy + (f1) + I poo is effective.

By replacing D’ by D’ + (f1) we can assume that D' = D — kp,, with D effective and k =
deg(D). If k > g (otherwise we are done) we apply Lemma 4.108 to the divisor D — (k— g) poo and
find a function f such that D — (k— g) poo + (f) := Dy is effective and therefore D+ (f) — k poo =
Do — g poo is an element of D of the required form. (|

Let C' be as in Lemma 4.135 and take the g-fold Cartesian product CY of C. As per Example 4.25,
(Y is a projective variety of dimension g. Recall that an affine part of it is given in the following
way:

Take C, as a nonempty affine part of C' in some affine space A™ with affine coordinates (z1, .. ., z,)
and denote by C) an isomorphic copy of C with coordinates (z%,...,z%). Then C¢ can be

embedded into the affine space A" with coordinates (x1,... 2L, ... 2f, ... 29).

Let S, be the symmetric group acting on {1,. .., ¢}. It acts in a natural way on C'9 by permut-
ing the factors. On the affine part described above this action is given by permuting the sections
(z%,...,%). The action of S, defines an equivalence relation on C'. We denote the quotient by
C9/8,.

Itis not difficult to see that C9 /.S, is a projective variety defined over K. On the affine part C¢ /S,
one proves this as follows: take the ring of polynomials K [z', ..., 29] where 27 is shorthand for the
n variables 7, . .., zJ,. On this ring, the group S, acts by permuting {z", ..., z9}. The polynomials
fixed under S, are symmetric and form aring R = K[z!,...,29]%. By a theorem of Noether (cf.
[ZASA 1976]) there is a number m and an ideal [ in K[Y7,...,Yy,] with R = K[Y1,...,Y,]/1.
Hence, C9/S, is isomorphic to V; C A™.

Let P be a point in C¥/S, (L) for a field L between K and K. Then P is the equivalence class of
a g-tuple (P1,. .., Py) with P; € C and for all o € G1, we get: there is a permutation 7 € S, such
that (O’Pl, ceey O’Pg) = (Pﬂ.(l), cee Pﬂ.(g)).

This means that for any P; the tuple (P, . .., P;) contains the whole Galois orbit G, - P;. Assume
that it consists of & disjoint G',-orbits, each of them corresponding to a place p1, . . ., pi of K(C)-L.
Hence the formal sum P; + - - - 4 P, corresponds to the L-rational divisor p1 + - - - 4 p3, which is
positive and of degree g.

This way we get a map ¢y, from C9(L) to Pic%.; defined by

Gr(P)— (p1+ 4+ Pk — gPoo),

where (p1 + -+ + Pr — g Poo) is the divisor class of degree zero associated to py + - - - + py.

Using the alternative description of L-rational divisors as sums of points on C' that consist of Galois
orbits under G, we get a more elegant description of ¢r.: let (P, ..., P;) € CY be arepresentative
of P € CY9/S,. Define ¢(P) as the divisor class of P; + -+ + P, — g Py in Picocf . Then ¢, is
the restriction of ¢ to Pic%, I
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Theorem 4.136 Assume that C' is a curve of genus g > 0 with a K-rational point P,,. Then
C7/8, is birationally isomorphic to J¢, and the map ¢ defined above represents a birational part
of the functorial isomorphism between J¢ (L) and Pic%, - It maps the symmetry class P of the
point (Pso, . . . , Px) to the zero class and so P__ corresponds to the neutral element of the algebraic
group Jo .

4.4.5 Jacobian variety of elliptic curves and group law

We come back to elliptic curves as introduced in Definition 4.111 and make concrete all of the
considerations discussed above.

Assume that F is an elliptic curve with function field K (F). Hence, F can be given as plane
projective cubic without singularities and with (at least) one K -rational point P... Clearly E'/S; =
E.

Let D € Pic% be a divisor class of degree 0, D € D a K-rational divisor. By the Riemann—
Roch theorem 4.106 the space L(D + P.,) has dimension 1. So there is an effective divisor in the
class of D + P.,, and since this divisor has degree 1 it is a prime divisor corresponding to a point
P € B(K), and ¢ (P) = D. So, E(K) is mapped bijectively to Pic%, the preimage of a divisor
class D is the point P on E corresponding to the uniquely determined prime divisor in the class of
D + P, with D € D.

This implies that E is isomorphic to its Jacobian as projective curve. So E(K) itself is an abelian
group with the chosen point P, as neutral element, and the addition of two points is given by
rational functions in the coordinates in the points.

Hence FE is an abelian variety of dimension 1 (and vice versa) and we can apply all the structural
properties of abelian varieties discussed above to study the structure of F(K) (in dependence of
K). This and the description of the addition with respect to carefully chosen equations for E will
be among the central parts of the algorithmic and applied parts of the book (cf. Chapter 13).

Let P = (z1,y1) and Q = (22, y2) be two points with x1 # x4 of the affine curve

E: y2+a1xy+a3y =23 + apa? + asx + ag.

The isomorphism maps them to divisor classes with representatives Dp = P — P and Dg =
Q) — Py of degree 0. The space L(Dp + D¢ + P ) has dimension 1 by Riemann—Roch. Hence,
there exists a function passing through P and () and having a pole of order at most 1 in P,.. Such
a function is given by the line [(x,y) = y — Az — p = 0 connecting P and Q. It has

\ = Y2 — Y1
X9 — X1

and p =1y — A\z;.

As Dp+ Do + Py = P+ @Q — Py hasdegree 1 and ! € L(Dp + Dg + P ), there exists an
effective divisor in this class that we denote by R and which is a prime divisor. Hence, in the divisor
class group we have Dp + Do = R + P, which is equivalent to P & Q = R on F using the
isomorphism from above.

Choosing P # @ with z; = x2 we apply the same geometric construction and get as connecting
line the parallel to the y-axis © = x;. Hence, the third intersection point has to be interpreted
as the point Po. This associates to each point P € E an inverse point —PF which has the same
x-coordinate.

In the remaining case P = () one can use the considerations above. The function! € L(2P— Py,)
passes through P with multiplicity 2, i.e., it is the tangent line to the curve at P. In formulas this
means
B 327 + 2a271 + ag — a1y

A
2y1 + a1z +as

and p =y — Ax;.
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4.4.5.a Division polynomials

By Theorem 4.73 we know the structure of the group of n-torsion points on E. In that context we
showed that for each n there exists a polynomial v,, such that the z-coordinates of n-torsion points
are the roots of ,,. These polynomials are called division polynomials.

If char(K) # 2, put

fo(l’) = 07 fl(m) = 17 fQ(m) = ]-a
fg(x) = 3% + bgﬂ?g + 31)4.232 + 3bgx + bs,
f4(.23) =925 + b2$5 + 5b4$4 + 10b5$3 + 10b8$2 + (bgbg — b4b6)$ + (b4b8 — bg)

where the b;’s are defined as in Section 4.4.2.a and forn > 5

Jon = falFnsafr oy — foafiil),
_ {fon+2fs_fn—1fS+1) if n is even,

,f2n+1 ~, .
fogaf2 = [ fac1f2.)  otherwise.

with f(x) = 423 + box? + 2byx + bg.
If char(K) =2 and E : y? + xy = 2® + a22? + ag then set

fo(l’) = 07 fl(m) = 1; fQ(x) =7,
fa(z) = 2t + 23 + ag, fa(z) = 25 + 2%a.

Otherwise E : 3% + asy = x> + a4x + ag and put

fO(x) = Oa fl(x) = 1; fQ(x) = as,

fs(@) = 2" + afr +aj, fa(z) = a3,
For n > 5, they can be computed recursively in both cases with the formulas

3 3
f2n+1 = fn+2fn _fn—lfn—i-l)

fafon Srsofnfi_y = Fo—afnfii

Now if P = (z1,y1) € E(K) is not a 2-torsion point then P € E[n] if and only if P = Py, or
fn(z) =0.
In addition there are explicit formulas for [n] when char(K) is different from 2, namely
[n]: E—E
Py if P € E[n],

P [n]P = On(z,y) wn(z,y) ' 2 Bl
(wr%(x,y),w%(x,y)> if P € E(K) E[n].

where
b = (2y + a1x + a3) fn  if niseven,
" fn otherwise

and
¢n = m/)i - ¢n71¢n+1 and 2'¢an = an - 1/%%(%% + a3¢2)~

Note that in general these formulas are not used to compute [n] P for given n and P.
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4.4.6 Ideal class group

The divisor class group relies on the projective curve and leads to points on an abelian variety.
For computational reasons it is sometimes easier to work with affine parts and the arithmetic of
corresponding affine algebras O.

The objects corresponding to divisors are ideals of O and the objects corresponding to divisor
classes are ideal classes of 0. The purpose of this section is to discuss the relation between these
groups.

Let C be an affine smooth curve with function field K (C) and coordinate ring O = K[C].

We recall that O is a Dedekind ring and so every ideal # (0) is a product of powers of maximal
ideals M in a unique way and every maximal ideal M corresponds to a place ps of K(C).

The ideals # 0 of O form a semigroup freely generated by the maximal ideals. To get a group
one generalizes O-ideals:

Definition 4.137 The set B C K(C) is a fractional O-ideal if there exists a function f € K (C)*
such that f B is an ideal of O. For a maximal ideal M C O define vy (B) := max{k € Z | B C
MP*}. Then
B = H M?)M(B)
M maximal in O

and B C O if and only if all vp(B) > 0.

To form the ideal class group we let two O-ideals By and Bs be equivalent if and only if there
exists a function f € K (C) with v (B1) = var(Bz) + var ((f)) for all maximal ideals M of O.

The group of O-ideal classes is denoted by C1(O).

4.4.6.a Relation between divisor and ideal class groups

Here we want to explain the relation between ideal class groups of rings of regular functions of
affine parts of absolutely irreducible smooth projective curves C' and the divisor class group of C'
(hence points of the Jacobian J¢).

For the simplicity of our presentation we shall assume that there is a K -rational point P,. Let
21 be a nonconstant function on C' with pole divisor

div(z1)oo = Moo Poo + Z m; P,

2<j<t

andt > 0, Mmoo > 0, m; > 0and Py, € C(K). Put Py, = Ps. Let O be the ring of functions
on C that are regular outside of the points Ps;. So O is the intersection of the valuation rings O,
of all places p of K (C) with vp(x1) > 0.

It follows that O is the integral closure of the polynomial ring K [x1] in K (C). It is the coordinate
ring of the affine curve Cp with Co(K) = C(K)~{Ps,,-- -, Ps, }.

The inclusion K[z1] — O corresponds to a morphism Co — A!, which extends to a map
72 C — P! with 771(00) = {Px,, .., P, }. To describe a relation between points on Jc and
elements of C1(QO), we state that every place of K (C) is either equal to ps for some maximal ideal
M of O or to an extension of the infinite place on P! to C.

Hence, there is a one-to-one correspondence between proper ideals A C O and effective K-
rational divisors D of C' in which only points of C» occur, given by

2 mibs = A%
where the p; are not extensions of po,. If A corresponds to D then deg(D) = deg(A). This

correspondence extends naturally to fractional ideals and arbitrary divisors.
Now we apply the theorem of Riemann—Roch to ideal classes of O to get
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Lemma 4.138 With notation as above let C be a curve of genus g. Let ¢ be an element of C1(O).
Then ¢ contains an ideal A C O with deg(A) < g.

Proof. Let A’ € ¢ be an O-ideal and assume that deg(A’) > g. Take the effective divisor D 4/
associated to A" and a function f such that D’ := (f) + D4 — (deg(A’) — g) P is effective of
degree g. Let D" be the divisor obtained from D’ by removing points in 71 (00) and let A be the
ideal obtained from D”. Then A € ¢ and deg(A) < g. O

Note that principal divisors are mapped to principal ideals. Therefore, one can consider the corre-
spondence between divisor classes and ideal classes. We are now ready to define a homomorphism
from J¢ to the ideal class group C1(O).

Define ¢ : Jo(K) — Cl(O) by the following rule: in the divisor class ¢ take a representative D’
of the form D' = D — g P, D effective. Remove from D all points in 7! (c0) and define A as
ideal in O like above. Then ¢(c) is the class of A in C1(O). By Lemma 4.138 ¢ is surjective.

For applications one is usually interested in the case that the kernel of ¢ is trivial, i.e., in choices
for C' and O such that C1(O) =~ Pic2. This allows us to use the interpretation via ideal classes of
polynomial orders O for the computations whereas the interpretation as points on the Jacobian of C
is used for the structural background.

So let us describe the kernel of ¢: let ¢ be a divisor class of degree 0 represented by the divisor
D = Dy + Dy — gP.,, where D; are effective divisors and D1 = > n; P; with P; ¢ 7~ 1{oo}
and Dy = Y m;Ps; with Py, € n'{oo}. If ¢(c) = 0 then [T M7’ is a principal ideal (f)
with f € O. Hence, all prime divisors occurring in the pole divisor of f correspond to points in
7n~1{oo} and we can replace D by an equivalent divisor D — (f) of degree 0, which is a sum of
prime divisors all corresponding to points in 7~ {co}.

Proposition 4.139 We use the notation from above. The homomorphism
¢ Jo(K) — ClO)

is surjective.
The kernel of ¢ is equal to the divisor classes of degree 0 in

{Z m; P, | ij =0 and all Py, € wil{oo}}.

Proposition 4.140 Assume that there is a cover
0:C — P

in which one point Py, is totally ramified and induces the place v, in the function field K (x;) of
PL. Let O be the integral closure of K[z1] in the function field of C. Then ¢ is an isomorphism
and, hence, the ideal class group of O is (in a natural way) isomorphic to the divisor class group of

C.

This gives a very nice relation of the projective algebraic geometry and the ideal theory in Dedekind
rings. Due to the isomorphism the ideal class group can be used for arithmetic while the divisor
class group setting provides structural background.

Definition 4.141 A nonsingular curve C'/ K for which there exists a cover ¢ in which one K -point
P, € C'is totally ramified is called a Cyp-curve.
If the functions = and y have pole divisor a Ps, and b P, respectively, one finds an equation over
K given by
C:apor’ +agq + Z i o'y, with a;; € K,
ia+jb<ab
with a0, Q0,1 7& 0.
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In particular, hyperelliptic curves are Cy;, curves if they have a K -rational Weierstra3 point and if
we take as affine part the curve given by a Weierstrall equation (4.1). This relation is the topic of
the following section.

Example 4.142 An interesting class of curves are the Picard curves of genus 3. Over a field of
characteristic char(K') # 3 containing the third roots of unity they can by given by an equation of
the form

y* = f(x),

where f(z) € K|x] is monic of degree 4 and has only simple roots over K.

4.4.7 Class groups of hyperelliptic curves

The type of hyperelliptic curves C' we consider in this book additionally satisfies that there exists
one K -rational Weierstrafl point of C'. This point is totally ramified under a cover ¢ and is denoted
by P-.. By the considerations of the previous paragraph these curves satisfy that the ideal class
group and the divisor class group are isomorphic. In Chapter 14 on the arithmetic of hyperelliptic
curves we will use the ideal class group for the efficient computations inside the group. To fix
notation we still speak of divisor classes usually implying this isomorphism. In Section 4.4.2.b we
have shown how one can use the definition and the Riemann—Roch theorem to derive an affine plane
equation. The K -rational point P, allows us to use the divisor of degree one in the construction.

Recall that a hyperelliptic curve over K of genus g with at least one K -rational Weierstraf} point
can be given by a Weierstraf; equation

y? + h(z)y = f(x), with h(z) and f(z) € K|z, 4.3)

where f is monic of degree 2¢ + 1 and deg(h) < g. By abuse of language we denote affine curves
given by such an equation as imaginary quadratic curves.
We use the equation of such curves C' to describe explicitly their ideal class group.

Theorem 4.143 Let C'/ K be an imaginary quadratic hyperelliptic curve of genus g and let w denote
the nontrivial automorphism of K (C') over K (z) with a K -rational Weierstral point Py, lying over
the place 2o of K (z). Let O = K[z, y]/(y* + h(z)y — f(x)).

(i) In every nontrivial ideal class ¢ of Cl(QO) there is exactly one ideal I C O of degree t < ¢
with the property: the only prime ideals that could divide both I and w([I) are those resulting
from Weierstra3 points.

(ii) Let I be as above. Then I = K [z]u(z) + K[z](v(z) — y) with u(z), v(z) € K[z], u monic
of degree t, deg(v) < t and u divides v + h(z)v — f(z).

(iii) The polynomials u(x) and v(x) are uniquely determined by I and hence by ¢. So [u,v] can
be used as coordinates for c.

Proof. Since for every ideal J we get that J - w(J) is a principal ideal we can reduce I repeatedly
until the condition in (i) is satisfied without changing its class. After this process we call J reduced.

Now assume that deg(/) < g, deg(J) < g, with I, J reduced and that [ ~ J. Then I -w(J) is a
principal ideal in O and so it is equal to (b) with b € K (C) having only one pole of order < 2¢ in
P. By Riemann—Roch all such functions lie in a K-vector space of dimension g + 1 and a basis
of this space is given by {1, z,22,...,29}. So b € K[z] and I - w(J) is the conorm of an ideal in
K[z]. Since I and J are reduced this means that I = J and (i) is proved.
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(ii). Let I € O be an ideal of degree ¢. Recall that {1, y} is a basis of O as K [z]-module. We choose
any basis {wy = f1(z) + fo(2)y, wa = g1(x) + g2(x)y} of I as K|[x]-module. We find relatively
prime polynomials k1, ho with fohy — gohe = 0 and choose uy, us € K[z] with u1hy — ughs = 1.
Now take u' := hjw; + howsy, w)h = uswi + ujws. Since the determinant of this transformation
is 1 the pair {v/(x), w) = v1(x) + v2(x)y} is again a basis of I. Since the rank of I is 2, va(x)
is not equal to 0. So I () K[X] is generated by u’. Since I is reduced, the degree of I is equal
to the degree of v’ and we can and will take © monic. Now write v; = au + v with degv < t.
By replacing wh by wh — au we get a basis {u(z),v(z) + va(z)y} of I. Since the degree of T
is equal to u(z)ve(x) we get: vo(x) is constant and so we can assume v (z) = —1. The element
(v+y)(v—1y) =02+ h(x)y — f(x) = (v + h(z)v — f(x)) — h(z)(v — y) lies in I and so the
last claim of (ii) follows.

(iii). From the proof of (ii) we have that u(z) is determined by I as monic generator of I () K [z].
Now assume that v’ — y € I with deg(v’) < ¢t. Thenv' — v € I () K[z] and hence v —v =0. O

Remark 4.144 We are in a very similar situation as in the case of class groups of imaginary quadratic
fields. In fact, Artin has generalized the theory of ideal classes of imaginary quadratic number fields,
due to GauB, to hyperelliptic function fields connecting ideal classes of O with reduced quadratic
forms of discriminant f(z) and the addition @ with the composition of such forms. Theorem 4.143
and its proof can easily be translated into this language.

We are now in a position to use the results obtained in the previous section and describe the divisor
class group of C' using the ideal class group of the affine part.

Theorem 4.145 (Mumford representation)

Let C be a genus g hyperelliptic curve with affine part given by y? + h(z)y — f(z), where h, f €
K[z], deg f = 2¢g + 1, degh < g. Each nontrivial group element D € Pic can be represented
via a unique pair of polynomials u(z) and v(z), u,v € K[z], where

(i) u is monic,

(i) degv < degu < g,
(iii) u | v% +vh — f.
Let D be uniquely represented by D = >oi_y P, —rPs, where P, # Py, P; # —P; fori # j and
r < g. Put P, = (x;, y;). Then the corresponding polynomials are defined by

T

u= H(a:—a:z)

=1

and the property that if P; occurs n; times then

=0, for 0 <j<n;—1.

lz=x;

(%) [o()? + v(x)h(a) — F(@)

A divisor with at most g points in the support satisfying P; # P, P; # —P; fori # jis called a
reduced divisor. The first part states that each class can be represented by a reduced divisor. The
second part of the theorem means that for all points P; = (z;, y;) occurring in D we have u(a:z) =0
and the third condition guarantees that v (x7 ) = y; with appropriate multiplicity.

Like for elliptic curves (cf. Section 4.4.5) one can make explicit the group operations in the ideal
class group. Consider the classes represented by [u1 (), v1 (x)] and [ug(z), v2(x)] and assume them
in general position. The product of the representatives is generated by

(urug, ui(y — v2), ua(y — v1), (y — v1)(y — v2)).
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By Hermite reduction from the generating system we obtain a basis {us(x),v(z) + wi(z)y}.
This ideal lies in the class of the product of the ideal classes but is usually not yet reduced. To
reduce it one recursively applies the fact that u | v + hv — f. This procedure is formalized and
applied to arbitrary inputs in Cantor’s algorithm, which we state in Chapter 14 on the arithmetic of
hyperelliptic curves.
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In the previous chapter we dealt with algebraic and geometric objects over arbitrary fields. In this
chapter we explain additional properties of these objects when considered over special fields. We
concentrate on varieties over the complex numbers and finite fields.

5.1 Varieties over the field of complex numbers

In the whole section we take ground field K as the field of complex numbers C. Since C is alge-
braically closed we can identify the affine space A™ (respectively the projective space P™) with the
set of points in C™ (respectively the homogeneous classes of (n + 1)-tuples in C"*1) together with
the topological structure induced by the Zariski topology. Recall that closed sets are given as zeroes
of polynomial equations.

The absolute value | - | makes C™ to a metric space and hence induces a “natural” topology. Since
polynomial functions are continuous in this topology it follows that Zariski closed sets are also
closed in this topology.

5.1.1 Analytic varieties

First we shall describe very briefly the analytic structure on A™ (respectively P™): the key notions
are holomorphic functions. Locally, holomorphic functions are given by power series converging in
an open ball.

87
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For open sets U C P™ one can globalize to get holomorphic functions by gluing together the local
“germs.” So a holomorphic function f on U is a complex valued function defined on U such that
for all P € U there is an open ball around P on which f is given by a convergent power series.
Examples for holomorphic functions are polynomials (for U = A™) and rational functions (for U
equal to the set of definition).

Meromorphic functions on U are defined as quotients of holomorphic functions. Locally they
are given by Laurent series with finite negative part. To a meromorphic function f on U and to
any point P € U we can associate the order of vanishing np(f) of f at P. It is negative if f has
a pole of order [np(f)| at P, and positive if f has a zero of order np(f) at P. If np(f) = 0
there is a neighborhood of P in U such that the restriction of f is invertible in this neighborhood
as a holomorphic function. In particular, it follows that the set of zeroes and poles of meromorphic
functions on U does not have a limit point in U. The (analytic) divisor div,,(f) is equal to the
formal sum diva, (f) = > pey np(f)P.

One can differentiate and integrate holomorphic and meromorphic functions and as usual one has
meromorphic differentials w on U. Locally at a point P € U they are of the form fp(x)dxy - - - dx,
with fp meromorphic and (z1, ..., x,) a local system of coordinates (mapping the chosen neigh-
borhood to an open ball in C™ with 0 as image of P). Their divisor is diva,(w) = > pey np(fr)P.
One sees that w is holomorphic on U if and only if the divisor of w has only nonnegative coefficients.

In the sequel we shall need a further concept, namely analytic varieties. For the notion of analytic
varieties (without boundary) in projective spaces we refer to [GRHA 1978].

One essential property of analytic varieties V,, C P" is that there exists a number d < n such
that Vj,, is locally isomorphic to a ball in an affine space A?, or equivalently: every point P € Vj,
has an open neighborhood Up (with respect to the topology on V,, induced by the restriction of
the topology on P" to V,,) and local coordinate functions (holomorphic in Up) which map Up
bijectively to a ball in C¢ with 0 as image of P.

Using this local analytic structure one defines holomorphic functions on open subsets of Vj;,
meromorphic functions on Vj,, holomorphic (respectively meromorphic) differentials and holo-
morphic (respectively meromorphic) maps between two analytic varieties. The number d is the
dimension of V.

Now assume that V' is an (affine or projective) algebraic variety of algebraic dimension d em-
bedded in P". First of all the underlying set is closed. Next, all points of V' are nonsingular, and
the Jacobi criterion (cf. Lemma 4.94) for the local (algebraic) coordinate functions together with
the implicit function theorem ensures that this set satisfies the conditions of analytic varieties being
locally isomorphic to C?. So we can give V' the structure of an analytic variety of dimension d
denoted by V,,,. Note that rational functions on V' are meromorphic functions on V,,. Of course, the
converse does not have to hold true.

But there is a very important special case. Assume that V' is a projective algebraic variety. Then
the underlying set is compact in P". It follows that meromorphic functions on V,, have only finitely
many zeroes and poles. Therefore, they are rational functions on V. So the field of meromorphic
functions on Vj, is equal to /(1) and has transcendental degree d over C.

The converse of this remark is true, too. So we can state the following fundamental result.

Theorem 5.1 Let V,,, be a compact analytic variety in P of dimension d. There is an algebraic
projective variety V' C P™ such that the induced analytic variety is equal to Vj,, and the field of
meromorphic functions on V,, has transcendence degree d over C and hence is equal to K (V).

The next lemma gives a slight generalization of the above facts about functions on varieties.

Lemma 5.2 Let V, IV be projective algebraic varieties. Then the set of holomorphic maps from V,,
to Wy is (in a natural way) identical with Homc (V, W).
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As a consequence of these comparison results, we can use the full power of complex analysis to get
purely algebraic properties of objects related to varieties defined over the complex numbers.

Before discussing the two examples that are the most important for us we will conclude this section
with a remark.

Remark 5.3 It is well-known in number theory that the interpretation of number fields K as sub-
fields of C is in a most fruitful way generalized to the study of number fields as subfields of p-adic
fields. The same is true if we want to study objects of algebraic geometry by analytic methods.
As counterpart of C one uses the completion of the algebraic closure of ;. Over these fields we
have the highly developed machinery of rigid analytic geometry. In Chapter 17 we shall have to
use parts of this theory as background for discussing p-adic point counting methods on curves over
finite fields, which have become important in recent years.

5.1.2 Curves over C

Analytic curves Cy, are one-dimensional analytic varieties embedded into a projective space over C.
From now on we shall assume that C', is compact. Then there is a nonsingular projective irreducible
curve C' such that Cy, is the corresponding analytic curve. Hence, from an abstract point of view
the rational functions on C' cannot be distinguished from the meromorphic functions on Cyy.

One uses this to produce functions on C' by analytic methods: locally there are many more mero-
morphic functions given by converging Laurent series, and by the gluing process we can hope to get
global meromorphic functions that turn out to be algebraic.

In the previous section we introduced the notion of divisors on analytic curves Cy, in a way
analogous to the algebraic case. The finiteness condition for coefficients not equal to 0 is replaced
by the condition that poles and zeroes have no limit point. But since we have assumed that Cy, is
compact this is exactly the same condition as in the algebraic case. Therefore, analytic divisors can
be identified with algebraic divisors in a canonical way. The same is true for divisor class groups.
(Note again that the situation changes totally if we go to affine parts of C'.)

We introduced differentials for algebraic curves in Section 4.4.2.c. We now look at them from
the analytic point of view. Here the usual calculus methods are used to construct the meromorphic
differentials. Again we get:

Proposition 5.4 Meromorphic (respectively holomorphic) differentials on C,, can be identified
with meromorphic (respectively holomorphic) differentials on C.

We have defined the genus g of C' with the help of the theorem of Riemann—Roch (cf. Theo-
rem 4.106). This theorem also holds for the divisor theory of Cy,. (In fact its original version
was proved in this context.) One of its consequences is that the holomorphic differentials {2 on
Can (oron C) form a g-dimensional vector space over C and that these differentials can be identified
with algebraic differentials with effective divisors. Let us choose a basis {w1,...,wy}. To get the
full power of analytic methods we have to go one step further and go to real surfaces.

Digression: the easiest example of Weil descent

Next we use an additional special property of C: it is a two-dimensional vector space over the field
of real numbers R with basis {1, 7} where as usual i> = —1.

Replacing a complex variable z by two real variables x, y using z = x + iy identifies the metric
vector space C" with the usual Euclidean space R?". By this process we lose the analytic struc-
ture but have a differentiable structure from usual real calculus again compatible with the Zariski
topology. Applying this to algebraic varieties V' of dimension d in A7 we find in a natural way an
affine variety Wg C A2" of dimension 2d with W(R) = V(C): we replace the n complex affine
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coordinates (X1, ..., X,,) by the real coordinates (Us, V1, ..., Uy, V,,) with X; = U; + iV}, plug
them into the equations (f1(X),..., (X)) defining V' and separate the resulting polynomials
into their real and imaginary part fr(U, V) = gi(U, V) + ihy (U, V), where gj, and h;, are defined
over R. Then W is the variety defined by (g, hr,).

By a gluing process we can apply this procedure to projective algebraic varieties. So we attach to
every affine or projective variety V' of dimension d defined over C an affine (respectively projective)
algebraic variety Wy, of dimension 2d defined over R with Wy, (R) = V(C). It is a nice exercise to
show that Wy, - C is isomorphic to V' x V as algebraic variety over C.

What we have sketched above is the most simple example of scalar (or Weil-) restriction of varieties
defined over a finite algebraic extension field L of a field K to varieties over K. This construction
will play an important role later (cf. Chapter 7 on Weil descent).

Riemann surfaces

We apply Weil descent to irreducible nonsingular projective curves C' defined over C and get an
irreducible two-dimensional projective variety W defined over R. The analytic structure of C'
induces a differentiable real structure that makes W locally isomorphic to a unit ball in R?. That
means that for every P € W (R) there is an open neighborhood Up € W and real differentiable
functions f1, f> defined on Up mapping Up to the open unit disc in R? and sending P to (0, 0).

Since C'(C) is compact, it follows that W is compact in the real topology.

As result we get that the projective curve C carries in a natural way the structure of a compact
Riemann surface. We remark that the converse is true, too: every compact Riemann surface is the
Weil descent of a projective nonsingular irreducible curve defined over C.

Riemann surfaces R are classical and very well studied objects in geometry. One key ingredient
is the study of paths on them up to homology (cf. [GRHA 1978]). They can be used to define
the topological genus g, of R. Namely fixing a base point %) and composing closed paths in a
natural way we turn the set of points P into a group. By identifying homologous paths we get the
Sfundamental group Il of R as quotient of P. It is generated by 2g,, paths satisfying one relation
which lies in the commutator subgroup of the fundamental group. This implies that the maximal
abelian factor group of I, the first homology group H1(R,Z), is a free abelian group with 2.
generators (ar, ..., Q2g,,)-

We come back to the case that R = W with C' a projective curve over C.
Proposition 5.5 The genus g of C'is equal to the topological genus g, of We.

Using well-known results from (real and complex) calculus we do integration on W¢ using holo-
morphic differentials w on C' and closed paths o on W . As above we choose a base point Fy on
We and get the group P by composing closed (continuous) paths beginning in F.

Lemma 5.6 We have a map
(v)0:PxQe—C

defined by (o, w)o := [, w where [ is the line integral along the path c.
Moreover, (-, -)¢ is independent of the homology class of « and vanishes when restricted to the
commutator subgroup of P in the first component.

Corollary 5.7 The map (-, -)o induces a pairing, that is denoted by (-, -), between the Z-module
H,(We, Z) and the C-vector space Q.
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Recall that we have chosen a basis (w1, . . ., w,) of the space of holomorphic differentials on C'. We
define the map

¢: HH(We,2) — €9

T o— (fLwi,..., [ wg)

where « is a path in the class of 7.

Proposition 5.8 The image A¢ of ¢ is a full lattice in C9Y, i.e., a discrete free Z-module of rank 2¢
in C9.

By this proposition we can associate a full rank lattice to each curve over C. The following lemma
describes what quotients of lattices look like.

Lemma 5.9 Let A be a lattice of full rank in C9 and let C9/A be the quotient group with quotient
topology. Then C9/A is compact and locally isomorphic (as topological space) to the unit ball in
C9.

Corollary 5.10 The set C9/A¢ is a compact topological space with respect to the quotient topology
inherited from CY. It is locally homeomorphic to the unit ball in C9.

Definition 5.11 The lattice A is called the period lattice of C' (with respect to the basis {w1, ...,
wy } of the holomorphic differentials).

We are now ready to define the Abel-Jacobi map. We fix the base point Py € C(C). For P € C(C)
choose a path v from P, to P and define .J, (P) := (f,y Wi, fv wy) € CY. The tuple J,(P) will
— in general — depend on the choice of 7. If 4/ is another path from P to P then v and ~’ differ
by a closed path beginning in Py and so .J,(P) — J,/(P) is an element of Ac.

Definition 5.12 The Abel-Jacobi map is defined by

J:C(C) — CI9/A¢c
P — JV(P)-l-Ac.

We can generalize this definition to divisors on C by linear extension. We denote the corresponding
map again by J.

Theorem 5.13 (Abel-Jacobi)

(i) Let D be a principal divisor of C.. Then .J(D) = 0. So .J induces a map .J from Pic, to
CY9/Ac.

(ii) The map .J is a group isomorphism.

By Lemma 5.9 the group CY9/A¢ carries an analytic structure since it is locally homeomorphic to
the unit ball in C9. The group Pic% carries the structure of an abelian variety, namely the Jacobian
variety Jo of C (see Definition 4.134). Hence, it has an analytic structure, too. The theorem of
Abel-Jacobi includes that .J is an analytic isomorphism.

So the structure of J as analytic variety is rather simple and described by C9/A.
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5.1.3 Complex tori and abelian varieties

An important part of the introduction to the objects relevant for cryptography were the connected
projective algebraic groups called abelian varieties (cf. Section 4.3). The analytic counterpart are
connected compact complex Lie groups (cf. e.g., Lang [LAN 2002a]).

We give the most simple example of a complex Lie group: take C? with the usual complex
structure and with vector addition + as group composition. It is obvious that the addition + as well
as the inversion — are holomorphic. The group C is not compact but we can easily find quotients
that are compact.

For this we choose a lattice (always assumed to be of full rank) A C C4, i.e., there is a basis

{1, ..., p2q} of C as real vector space such that
2d
A:{ZZJ‘MJ‘| Zj€Z}.
j=1

Equivalently we have: A is a Z-submodule of C4 of rank 2d which is discrete, i.e., in every bounded
subset of C? there are only finitely many elements of A.

We can endow C? /A with an analytic structure in a natural way. Let the U ; be open sets covering
C/A such that each U. j is homeomorphic via bijective continuous maps ; to balls B; in C9. The
maps ; are assumed to be compatible with restrictions to intersections of the sets U;. We define
holomorphic functions on Uj as functions f; : U; — C such that f; o gpj_l are holomorphic on
Bj; and come to global functions by gluing local holomorphic functions. Meromorphic functions
are defined as quotients of holomorphic functions. It is an immediate consequence from these
definitions that C?/A carries the structure of a complex connected Lie group that is a quotient (as
Lie group) of C¢/A.

Definition 5.14 A complex Lie group isomorphic to C?/A is called a complex d-dimensional torus.
A fundamental result is:

Proposition 5.15 Let X be a connected compact complex Lie group of dimension d. Then X is
isomorphic to a torus 7 := C?/A.

For the proof see [MUM 1974, p. 2].

We apply this to an abelian variety A of dimension d defined over C. The associated analytic
variety A,, is connected and compact. Since addition and inversion on 4 are given by polynomials,
Aan is a torus and, hence, is isomorphic to the Lie group C?/A for some lattice A. Note that by this
isomorphism the addition on A is transferred into a very easy form. It is just the vector addition in
C? modulo A.

Next we shall study the converse. We want to decide whether 7" is the analytic companion of an
algebraic variety. By Chow’s theorem this is equivalent to the question whether we can embed T’
into a projective space such that the analytic structures are compatible.

If this is possible we shall find d algebraically independent meromorphic functions on 7. By stan-
dard methods of algebraic theory (the key word is “ample line bundle”) one sees that the converse is
true, too. So one has to construct meromorphic functions on 7', or equivalently, meromorphic func-
tions on C? which are periodic with respect to A. There are well-known methods for this (for d = 1
one uses results like the Weierstrall product theorem or the Mittag—Leffler theorem). In general the
main ingredients are theta functions attached to A. We shall need them later on (cf. Chapter 18)
and then deal explicitly with the case that is most interesting for us, and so we do not give a formal
definition here.

In [MUM 1974, pp. 24-35] one finds the discussion what additional properties A has to have in
order to have enough periodic functions.
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First recall that a Hermitian form H on C% x C? can be decomposed as
H(z,y) = E(iz,y) +iE(z,y)

where F is a skew symmetric real form on C satisfying E(iz,iy) = E(x,y). The form E is called
the imaginary part Sm(H) of H. (Since these notations are rather standard we find it convenient
not to change them though the letter £ is used for elliptic curves in most cases. We hope that this
does not give rise to confusion.)

Theorem 5.16 The torus 7' = C¢/A can be embedded into a projective space and, hence, equals
the analytic variety attached to an abelian variety if and only if there exists a positive definite
Hermitian form H on C? with E = 3m(H) such that E restricted to A x A has values in Z.

We use the structure theorems for Hermitian forms and get

Corollary 5.17 Let T = C?/A be a complex torus attached to an abelian variety .[A. Then A is
isomorphic to Z? @ Q - Z?, where the (d x d)-matrix € is symmetric and has a positive definite
imaginary part, i.e., lies in the Siegel upper half plane TH,,.

Corollary 5.18 Assume that d = 1, i.e., A is an elliptic curve . Then the torus associated to F is
isomorphic to C/(Z + 7Z) where 7 is a complex number with positive imaginary part.

Definition 5.19 We call (2 the period matrix of A.

We continue to assume that 7" = A,, with Hermitian form H and E' = Sm(H).
With the help of E' we can define a dual lattice A given by

A= {x € C| E(z,y) €7, for all y € A}.

The lattice A contains A and A /A is finite. Furthermore, A belongs to a torus f, which is attached
to an abelian variety A. In fact we have just constructed the dual abelian variety to A by analytic
methods over the complex numbers (see [MUM 1974], 82-86). There it is also shown how this dual
abelian variety can be constructed by purely algebraic methods over any ground field.

For us a special case is most important. Assume that A = A and so A is equal to its dual.

Definition 5.20 If A = A then A is called principally polarized.

Corollary 5.21 Let .4 be a principally polarized abelian variety over C with lattice A, Hermitian
form H and E = Qm(H). Then there exists a basis {1, . . ., 124} of A such that

0 Iy
[E(unﬂj)hgi,jéw - l —Ig 0 ] .

Now we come back to the theme of this book, namely projective irreducible nonsingular curves C
and their Jacobians Jc.

By the theorem of Abel-Jacobi (cf. Theorem 5.13) we have found an isomorphism from Pic%, the
divisor class group of degree 0 of C' to C9/A¢ by integrating a basis of holomorphic differentials
along paths that form a basis of the first homology group of C'. So the period lattice of C' is attached
to the isomorphism class of (J¢ )an.

Definition 5.22 The period matrix Q¢ of A¢ is called the period matrix of C. The form E(z,y) is
called the Riemann form.

Lemma 5.23 The period matrix 2 can be computed by integrating a basis of holomorphic differ-
entials along paths on the Riemann surface corresponding to C'.

By duality theorems about differentials and paths on Riemann surfaces one sees:

Proposition 5.24 The Jacobian of a projective irreducible nonsingular curve is a principally polar-
ized abelian variety.
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5.1.4 Isogenies of abelian varieties over C

We can use the torus representation of abelian varieties to find the algebraic results about torsion
points, isogenies and endomorphisms. So assume that A is analytically given by 7' = C¢/A.
First we find a result given previously.

Proposition 5.25 Let n be a natural number. The points of order dividing n of A, A[n], are iso-
morphic to the subgroup L A/A C C%/A and hence isomorphic to (Z/nZ)>?.

Let GG be a subgroup of %A /A. The inverse image of G in C¢ is a lattice A¢ that contains A, and
hence we get a quotient map from 7 to C¢/Ag = T /G with kernel isomorphic to G. This quotient
map is, by definition of the analytic structure on tori, an analytic map. The Hermitian structure on
T induces one on T that satisfies the condition from Theorem 5.16 and hence 7 corresponds to
an abelian variety Ag.

By Lemma 5.2 the quotient map comes from an algebraic morphism that is an isogeny from A to
A with kernel corresponding to G.

Proposition 5.26 Let .A be an abelian variety defined over C with lattice A C C?. The isogenies
n of degree n of A are, up to isomorphisms, in one-to-one correspondence with lattices A,, which
contain A and satisfying [A,, : A] = n. The kernel of 7 is isomorphic to A, /A.

Of special interest are isogenies with image isomorphic to A. For simplicity and since it is in the
center of our interest we restrict the discussion to simple abelian varieties.

We know that in this case the ring Endc(A) of endomorphisms of A is a skew field and that all
endomorphisms different from the zero map are isogenies.

We want to use the results of Proposition 5.26 but look at them from a slightly different point of
view. In the proposition we interpreted isogenies as quotient maps of the identity map on C?¢ with
changing lattices. Now we shall fix the lattice A and study holomorphic additive maps o : C% — C¢.
Such a map « induces an endomorphism of A if and only if it is well defined modulo A, i.e.,
a(A) C A

Example 5.27 We give the most simple example to explain this. Look at the endomorphism [n]
obtained by scalar multiplication with n.

In the first interpretation we take as lattice of the image the lattice %A and take the quotient map
from C?/A to C4/ (L1 A).

In the second interpretation we multiply elements in C? by n and so the subset %A is mapped to
A and hence to the zero element of the torus associated to A.

From the condition imposed on « (it has to be continuous) it follows that « is a linear invertible
map on the real vector space of dimension 2d attached to C?. Hence (after having chosen a basis
{p1, ..., u2qa} of A) we can describe « by a real invertible (2d x 2d)-matrix B with the additional
condition that o maps A into itself. But this is equivalent to the condition that B has integers as
coefficients. Hence the characteristic polynomial x(«) 4(T") of « is a monic polynomial of degree
2d with integers as coefficients.

Remark 5.28 The reader should recall that we have described endomorphisms « in the algebraic
setting by using Tate modules to produce ¢-adic representations. One of the crucial results due to
Weil is that the characteristic polynomials do not depend on the prime /.

Here we use the period lattice to produce an integral representation again of dimension 2d. It
plays the role of Tate modules in the analytic setting. The resulting characteristic polynomial x . (7')
is the same as the corresponding /-adic polynomial. This remark will become important for point
counting algorithms.
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Until now we have only looked at linear algebra and continuity. But we have to take into account
the analytic structure that yields holomorphy conditions for «.
We shall explain this in the simplest case.

Example 5.29 Let A =: E be an elliptic curve. The associated analytic variety is isomorphic to
C/(Z + 77Z) with 7 ¢ R. A holomorphic additive map « is given by a matrix

ny N2
ns Ng
over Z if we take {1, 7} as basis, it also represents a multiplication by a complex number /3 that is

determined by (1) =: 3 = ny + na7. Hence it maps 7 to 37 = ny7 + na72 = nz + N4T.
Now assume that ny # 0 or, equivalently, that 5 ¢ Z. Then 7 satisfies the equation

B:

no7? + (N1 — n4g)T —nz =0

and, hence, Q(7) is an imaginary quadratic field K.

The lattice Z + 77 is an ideal A, of an order of K, and the isogenies correspond to numbers
n1 + noZ that map A, into itself. But this means that End¢(F) is an order (cf. Definition 2.81) in
K and that E has complex multiplication.

For higher dimensional abelian varieties .A, analogous but more complicated considerations lead to
the CM-theory mentioned already in the algebraic part. Again one gets that the lattice of abelian
varieties with complex multiplication is very special and that the period matrix has an algebraic
structure. This combined with class field theory is the key of the CM method used to construct
abelian varieties over finite fields with known number of points. We shall be more precise in the
next sections in the case of elliptic and hyperelliptic curves and come to algorithmic details in
Chapter 18.

5.1.5 Elliptic curves over C

In this section we shall apply the theory of curves and their Jacobians over C for elliptic curves E.

5.1.5.a The complex theory of elliptic curves

We recall Corollary 5.18 that the Jacobian variety of E and hence E itself is analytically isomorphic
to C/(Z + 7Z) where 7 is a complex number with a positive imaginary part.
Let E be given by an affine Weierstrall equation

E3y2=$3+a4x+a6 with a4, ag € C.

As a consequence of the theorem of Abel-Jacobi 5.13 we get: there is an analytic isomorphism
between the groups E(C) and C/A g where A is a lattice Zw; + Zws in C.

We want to describe explicitly this isomorphism. For this we begin with the lattice A = Zw; +
Zws and then construct the elliptic curve corresponding to it. We shall follow closely [COH 2000,
Chapter 7] and [SIL 1986, Chapter VI, section 3]. The first step is to find the meromorphic func-
tions.

Definition 5.30 Let wy,ws € C be linearly independent over R. An elliptic function with periods
{w1, w2} is a meromorphic function f(z) on C such that for all z € C one has f(x + wy) =

[z +ws) = f(2).



96 Ch. 5 Varieties over Special Fields

We shall fix wy,ws as well as the lattice A spanned by them in the following. Elliptic functions will
always be periodic with respect to A.

The task is to construct nonconstant elliptic functions. It was solved by Weierstral3.

Definition 5.31 The Weierstrall p-function is defined by the series

1 1 1
A) = — S 5.1
p(z7 ) Z2 + Z <(Z+W)2 UJ2> ( )
weA N {0}
This series converges uniformly on every compact subset of C \ A. The function p := p(z, A)

defined by (5.1) is a meromorphic function on C with poles (of order 2) in A. It is an even function,
ie., p(z,A) = p(—z,A) forall z € C\A.

The proofs are straightforward applications of the basics of complex analysis, see e.g., [SIL 1986,
Chapter VI, Theorem 3.1].
As usual we denote by o’ := ¢(z, A) the derivative of . Again it is an elliptic function. It can be
computed easily by using the series defining g; the result is again a series whose first term is —Z%-
It follows immediately that ¢’ is an odd function, i.e., p’(2) = —p'(—2).

Define the Eisenstein series G, := G, () of weight n for A by

Gn(A) = Z w ™

weA \ {0}
The fundamental observation is:

Theorem 5.32 The elliptic functions p an ¢’ satisfy the equation
0 (2)? = 4p(2)® — 60G4p(2) — 140Gs.
This is the affine equation for an elliptic curve E with function field C(gp, ©’). The map
®:C/A — EpCP?

. {(p<z>:p'(z>:1) for = ¢ A
®(A)=(0:1:0)

is an isomorphism of Riemann surfaces, which is a group homomorphism (using the induced natural
additive group structure on C/A and the elliptic curve group structure on E}y).

Hence E is the abelian variety attached to the torus C/A, and we can interpret the map ® as
the inverse of the Abel-Jacobi map from Ey as curve to its Jacobian variety which is isomorphic to
FE.

Remark 5.33 The equation defining F, is not quite in the standard Weierstral form. We obtain it
if we replace p’ by y = 1/2¢’ and set z = p, g2 := ga(A) := 15G4(A) and g5 := g3(A) =
35G6(A). The resulting equation is

EA:y2:a:3—ggx—gg.

We have seen that for every lattice A we can use g2(A) and g3(A) to obtain the equation of the
corresponding elliptic curve E. The first question is now to describe in terms of the two lattices
A, A’ what it means that F/» is isomorphic to F:.

As we have seen in Lemma 5.2 this is equivalent to the question under which conditions C/A is
analytically isomorphic to Cy:.
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Example 5.34 Take o € C* and define the map t,, from C to C by z — «z. Define A’ := aA.
Then t,, induces an analytic isomorphism

ha : C/A — C/aA.

Motivated by the example we define that two lattices A; and Ay are homothetic if there is an o € C*
such that aA; = As.

Theorem 5.35 There is a canonical isomorphism between the set of C-isomorphism classes of el-
liptic curves and the set of homothety classes of lattices in C.

Corollary 5.36 Let A be a lattice in C with basis {wy,w2}. We can assume (by replacing w; by
—w; if necessary) that 7 := wy/wj is a complex number with positive imaginary part. Let A, be
the lattice Z + 77Z. Then the elliptic curve E, is isomorphic to Fp .

By this result we have attached to every (isomorphism class of) elliptic curves over C a unique
lattice A, := Z + 7Z such that E is isomorphic to Ez .z =: E, with 7 € C with imaginary part
Sm(7) > 0. But 7 is not uniquely determined by A

Lemma 5.37 Let 7, 7' be complex numbers with positive imaginary part. Then A, = A, if and

only if there exist integers a, b, ¢, d with ad — bc = 1 and 7/ = Z:jrrg

Definition 5.38 A complex function f which is holomorphic on the upper half plane

H:={reC|3m(r) >0)}

1o =1 ()

ct +d

and which satisfies

for all integers a, b, ¢, d with ad — bc = 1 is called a modular function.

The set of modular functions forms a field F}.
Example 5.39 Define
j:H — C

92(A7)3 )
492 (AT)3 - 2793(/\7—)2

T +— j(r):=1728

Then 5 € F3.

Theorem 5.40

(i) The field of modular functions is equal to C(5).
(ii) The elliptic curve E. is isomorphic to E. if and only if j(7) = j(7').
(iii) Let E be an elliptic curve defined over C with absolute invariant jg (cf. Corollary 4.118)
Then there is a 7 € H with j(7) = jg and F is isomorphic to E.

Since j € Fy we have j(7 +1) = j(7). (Takea = 1,b=1,c = 0,d = 1.) We can use this identity
to develop j into a Laurent series “at 0o.”

Define g := 2™ and j*(q) := j(7). Observe that q approaches 0 when 3m(7) becomes large.
It turns out that j* can be extended to a meromorphic function with a pole in 0 of order 1. Its
Laurent series has integer coefficients. It is called the g-expansion of the j-function.
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Proposition 5.41 The g-expansion of the j-function is given by

(1+2403°7° , o3(n)g™)*
qITen(1—g™)*

For a proof we refer to [SIL 1994, Chapter I, Remark 7.4.2].

After having an explicit description of isomorphism classes of elliptic curves over C we now
determine the isogeny classes again by using the theory of complex tori (see Section 5.26) applied
to elliptic curves and get:

jlq) =

Proposition 5.42 Let E and E’ be two elliptic curves defined over C with lattices A (respectively
A).

Then F is isogenous to F’ if and only if there exists an « € C* with A C A’. If so denote by
N the isogeny from E to E’. Then the kernel of 7,, is canonically isomorphic to a1 A’/A.

Corollary 5.43 Assume that £ is an elliptic curve over C with jg = j(7). Then
Endc(E) ={a e C|aA, C A}

5.1.5.b Elliptic curves with complex multiplication

The ring
Endc(E) ={aeC|aA; CA;}

always contains and in general will be equal to Z.
We reformulate the definition of complex multiplication (cf. Definition 4.88) applied to elliptic
curves E over C.

Definition 5.44 The elliptic curve E has complex multiplication if and only if Endc(E) is larger
than Z.

In Example 4.90 we have already discussed that this implies:

Corollary 5.45 Let £ be an elliptic curve defined over C with period 7. Then 7 is a nonrational
integer in an imaginary quadratic field K, and End¢(E) is the order corresponding to Z + 7Z in
K.

The converse is true as well.

Proposition 5.46 Let K be an imaginary quadratic field, let O be an order of K, and let A be an
ideal of O. Then A C C s a lattice, the elliptic curve E4 := C/A is an elliptic curve with complex
multiplication and End¢(F4) = O. For two ideals A, A’ of O we get: E, is isomorphic to E 4/
over C (i.e., the absolute j-invariants are equal) if and only if A and A’ are in the same ideal class.

So elliptic curves with complex multiplication have algebraic periods 7. But even more important
we get that the absolute invariant j(7) is a very special algebraic integer, i.e., it is the zero of a
monic polynomial over Z, and is obtained as j-invariant of an ideal in an imaginary quadratic field.
The exact statement is the key result of class field theory of imaginary quadratic fields.

Theorem 5.47 Assume that £ is defined over C and has complex multiplication. Let 7 be its period.
Then Q(7) is an imaginary quadratic field, Endg,)(E) = Endc(FE) is an order O in Q(7) and
the absolute invariant j(7) is an algebraic integer that lies in the ring class field Hp, over Q(7).
The invariant j(7) is the j-function evaluated at an ideal of Op.
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Recall that the ring class field of O is an abelian extension of Q(7) whose Galois group is isomor-
phic in a canonical way to the ideal class group of Og. The most important case for us will be that
Og is the ring of integers O of Q(7). Then Hp,, is the Hilbert class field H of Q(), the maximal
Galois extension of Q(7), which is unramified and has an abelian Galois group. In particular, we
get that the degree of H over Q(7) is equal to the order of C1(Q), which is called the class number
of Q(7) .

On the other side it follows easily from Theorem 5.35 that jg, depends only on the ideal class
group of A in Cl(QO) and class field theory tells us that all the algebraic numbers jg, are conjugates
under the action of the Galois group of H over Q(7). From this we get:

Corollary 5.48 Let K = Q(v/—d) be an imaginary quadratic field with ring of integers O. Let E
be an elliptic curve with End¢(E) = O. Then the minimal polynomial of jg is the Hilbert class

polynomial
ha

Hy(z) = [](z - j(A:)
i=1
where j(A;) is the j-invariant of the elliptic curve corresponding to A;, the number A is the order
of the ideal class group of K and A; are representatives of elements of the class group of O. The
coefficients of the Hilbert class polynomial are rational numbers. As jg is an algebraic integer, they
are integers.

For the proof of Theorem 5.47 and Corollary 5.48, see for example [SIL 1986, Appendix C, Theo-
rem 11.2], or [LAN 1973, Chapter 10, Theorem 1].

Reduction of elliptic curves with complex multiplication

In Section 5.2 below we shall discuss elliptic curves over finite fields. The determination of the
order of the rational points will be one of the most important topics in this part. Here we can give a
bridge from elliptic curves over number fields to elliptic curves over finite fields.

The class polynomial
ha

Hy(z) := H(JU —j(A)

=1

can be reduced modulo a prime p to a polynomial H4(x), defined over F,,, and it has simple roots
if p does not divide d.

Let F,,» be the smallest field that contains a root j,, of Hy(x),. It is the reduction modulo p of
one of the invariants j(A;). As the elements j(A;) are conjugate it follows that all roots of Hy(x),
are in this field.

By the algebraic theory of elliptic curves we know that there are elliptic curves I, defined over
[, with absolute invariant j,. The curve E,, is determined up to twists, and if j, # 0, 123 there is
exactly one twist of I,.

For the sake of simplicity we shall assume now that r = 1 and that the prime number p is decom-
posed in Q(v/—d). Class field theory of imaginary quadratic fields gives the following remarkable
result.

Theorem 5.49 There is an integer 7 € Q(+v/—d) such that 77 = pand [p + 1 — (7 + )| is the
number of IF-rational points on either £, or one of its twists.

To understand this theorem one needs the theory of elliptic curves over finite fields and in partic-
ular of the Frobenius endomorphism and its related characteristic polynomial (cf. Example 4.87)
made explicit in Example 5.83. The theorem then states that the algebraic integer , interpreted
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as endomorphism of E;(4,) operates modulo p on E), or one of its twists as Frobenius endomor-
phism, and so the characteristic polynomial of 7, interpreted as an algebraic number, is equal to the
characteristic polynomial of the Frobenius endomorphism.

5.1.6 Hyperelliptic curves over C
5.1.6.a Periods and invariants

Let C be a hyperelliptic curve of genus g defined over C with Jacobian variety Jo. As we know
Jc is as analytic variety isomorphic to a torus C9/A¢. Since J¢ is principally polarized A¢ can be
chosen in the form Z¢ @ 2 - Z4, where the (g x g)-matrix {2 is symmetric and has a positive definite
imaginary part, i.e., lies in the Siegel upper half plane IH,,.

The matrix €2 is the period matrix of C'. It can be computed by integrating a basis of holomorphic
differentials along paths on the Riemann surface corresponding to C'. Since such a basis is explicitly
known for hyperelliptic curves (see Chapter 17) it is in principle possible to compute it. For elliptic
curves I this gives the period 7, a complex number with a positive imaginary part.

The next step for elliptic curves was to determine the isomorphism class when the period is
known. This task was solved by the j-function whose value at 7 is the absolute invariant of E. To
construct j we used Eisenstein series as special functions on lattices, i.e., modular forms.

Analogous to the elliptic curve case we define values of complex functions to lattices that are
now Siegel modular forms: let Q) € H, the period matrix of a principally polarized abelian variety
and let z € CY be a column vector. The Riemann theta function is given by

0(z,Q) = Z exp(mi(n'Qn + 2n'z)).

nez9

This function is C-valued, holomorphic and symmetric, i.e., §(z,Q) = 0(—2z, Q).
For fixed €2 € H, we get a function from CY to C and we define the Riemann theta divisor by

0 .= {zmod A | 6(z,Q) =0}.

Recall that T and 7’ define isomorphic elliptic curves if and only if 7/ = Z:—IS with a,b,c,d € Z
and ad — be = 1, i.e., if 7 and 7/ are equivalent under the action of SLy(Z), the group of invertible
(2 x 2)-matrices over Z with determinant 1.

An analogous result holds for arbitrary dimension. We define Sp(2g,Z) to be the symplectic
group of dimension g over Z. (For g = 1 this is SLy(Z).) It acts on H, in a natural way (cf.

[LAN 1982]).

Theorem 5.50 Two period matrices €2, Q' define isomorphic principally polarized abelian varieties
if and only if they lie on the same orbit under the operation of the symplectic group Sp(g, Z) on H,,.

For a proof see [LAN 1982].

The theta divisors of two equivalent period matrices 2, ' do not have to be equal. But if they
are equivalent then there exists an a € Q(%Zg ) + %Zg such that ©(©) = @S,,Q) where 9&9) denotes
the translation of ©(Y) by a.

This motivates the introduction of theta characteristics

0 {ﬂ (2,Q) = n%q exp(m’ <n+ %5)t9<n+ %5) + 2<n+ %5)t (z + %6)) (5.2)

with column vectors 0 and € € (Z/2Z)9. If we fix 0, ¢ and set z = 0, we obtain functions on H,,
called the theta constants. A theta constant is even, if dfe = (mod 2), and odd otherwise. All
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odd theta constants vanish for principally polarized varieties. There are 2971(29 + 1) even theta
constants.

Theorem 5.51 The complete set of theta constants uniquely determines the isomorphism class of a
principally polarized abelian variety of dimension g.

The proof is given in [IGU 1960].

Example 5.52 For g = 2 there are 10 even theta constants. A list of the vectors §, ¢ € (Z/27)*
used to get them is found in [WEN 2003]. For g = 3 there are 32 even theta constants.

By the theta constants we have found a complete system of invariants for isomorphism classes of
principally polarized abelian varieties of dimension g > 2. But two things are disturbing. First these
invariants are not “independent.” Secondly and worse they are defined analytically. But they define
points in an algebraic variety, the moduli space of isomorphism classes of principally polarized
abelian varieties of dimension g. So we would like to have algebraically defined invariants.

For g = 2,3 we can make this precise. Due to results of Weil [WEI 1957] we know that every
principally polarized abelian variety A of dimension g < 3 is the Jacobian variety of a curve
C. Because of the famous theorem of Torelli, the isomorphism class of A with its polarization
is determined uniquely by the isomorphism class of C. So the invariants have to be algebraic
expressions in the coefficients of the equation defining C. Recall that for elliptic curves E we can
express jg by the coefficients gs, g3 of a Weierstrafl equation.

In fact we can find these algebraic invariants for hyperelliptic curves of genus 2 and 3 using work
of Igusa [IGU 1960] and Shioda [SHI 1967].

5.1.6.b Hyperelliptic curves of genus 2

For every principally polarized abelian variety A of dimension two there exist three absolute in-
variants j1, jo, and js called Igusa invariants, which determine its isomorphism class. They can
be expressed in terms of the theta constants. The explicit formulas can be found in [WEN 2003,
Section 5].

Let C : y? = 2° + fux* + f32° + fox® + fix + fo be the curve with Jo = A. Then the invariants
Ji of the Jacobian of C' can be expressed by

g1 =15/ Tho, j2 = I314/T1o and j3 = 131/ 10, (5.3)

where the I;’s are given below expressed in the coefficients of the curve.
By Spallek [SPA 1994, p. 71] the absolute invariants /; are given in terms of the coefficients f;
as

Iy = 6f3 —16f4f2 + 4011,
L = A(fif3 =3fsf3 =3fifsfi +9f5 fi + fafafr — 201 +12f} fo — 45 fa fs fo + T5f2fo),
Ie = — 2(—4f2f3f3 + 12f3f3 + 1200 f5 — 38fufsfs + 18f5 + 12fififi — 36f3f1

—38f% fafafr 1109 fu f3 fo fr —1AfE 3 fr — 13 fa f3 f1 + 1834 [T — 133 fa /T — 88f3 [}
—32fafofT +160f1 —30f2 f3 fo+99faf3 fo+ 80 fi f2 fo — 246 f7 fs f2.fo — 165 f3 fa fo
+ 320f1f5 fo — 308f% fifo + 930fafsfifo — 800f2fifo + 450fF f5 — 1125f3f3),
Lo = fif3fsft —AfS 307 — AfIfSf7 + 18fafsfSff — 2Tfafi — Afif3f2 + 16f3 f7
+ 18fifafofi — BOfafifof? — 6fLf5 /7 + 144fsfsfi — 2Tfifi + 144f7 fsft
— 1283 fi' —192fa fo fi +256 7 — 4f7 3 15 fo+16f3 f5 fo + 16 £3 f2 fo — T2fa f3 f3 fo
+ 108f3fo + 18fFf3faf1fo — T2fsfafifo — 8OfLfafifrfo + 356fuf3 f3f1fo
+ 24fif3fifo — 630fsfSfrifo — Gfif3fifo + 24fafififo + 144fLfaf7 fo
— T46f3 fafofifo + 560f3fafEfo + 1020faf3 f2fo — 36£3f5 fo + 160fsfsf3 fo
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— 16002 f7 fo — 273 f3 & + 1083 f§ + 1443 3 f2 /5 — 630fa f3 f2/5 — 12811 f3 f&
+ 5603 fsf3f5 + 825f3 f3f5 — 900faf3fs — 192fifsfrfd + 1020f% f3 f1f5
— 900f3 f1fe + 160f%f2frfd — 2050fafsf2fifd + 2250f3 f1fs — 50f%f%fd
+ 20003 f7 f§ + 256 £2 f§ — 1600 f3 f§ + 22504 f3 fo + 2000 f2f5 — 37503 f2 5

— 2500 faf1f5 + 3125f .

Hence we can compute the invariants j; of the curve C' if we know either its period matrix or the
curve equation. Conversely, from the invariants we get a system of polynomial equations for the
coefficients of an equation defining C' and we can solve this system in principle, e.g., by applying

Buchberger’s algorithm.

But there is a much more efficient way due to Mestre [MES 1991].
To use it we have to define new invariants, which we call Mestre’s invariants. In his paper, Mestre
introduces the invariants A, B, C, D [MES 1991] and invariants j{, j5, j5 with

ji = A°/D, jb = A*B/D and j; = A*C/D

which satisfy

L =, T204

J3 1080755 1641

- —
= 1205’j2 -

In addition we need

-1 (1
a=-—— (.—, + 62208

4556250 \ j;

6750  (120% x 6750) 7

37 1202 x 2025100 2025 375

37 Ajsds

3j12 357

which relates Mestre’s invariant D with Igusa’s discriminant A by o = %-
Next one defines a conic Q(j1, j2, j3) by the equation

with

QSB =

Z QirriTr =0

1<i,k<3
653+ 5’5
37'1
2 .
2(55° + 414%)
Qa = -,z
371
Q?)l - QQQOC
1 (347 4ghgh | 244
Qua—y [ 2+ 2283 L 25 ),
712 \ 341 9 3
. g2 . 72
L (Ao 20505 205
a2\ 2 95/, 9

This conic is intersected with a cubic H(j1, jo, j3) given by the equation

E Hipvixpx
1<k, 1<3
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where
2 (i — 675 + 945°0)
Hin = e ,
.73 YY) o2 .73
_ 255" + 4715293 +1271J3" + 1@
Hi12 = Honn = 3 ’
971
.73 Y, 2 . o2 2 .
His = Hsy = Hisi = Higs = Jo” +4/351J2g5 + 442”55 + 65145 + 351 J2e
9517
I Y ) e ey ,2.
Hizz = 18517 ( j? +4J§2];/3+ J1J3 +4j§jé2+3]{2]§a+12ﬁ2]éa )
1 1
1 .74 4-/2‘/ 16‘/3‘/ 2677 .72 . o ey
Hizs = Hziz=Hsz=—3 3.2—,-1- J2 J5 4 ]2.,]3-1- J2J5 +855% + 351 5%+ 21 jha |
18]1 J1 3 3]1 3
1 3‘/4 ) ) 8-/ .72 L ) )
M2z = g0 ( ;3 + 655775 + J13J3 +25555° — 351 s |
1 1
1 2.753]{3 4Jé]é2 .73 o2 72 .
H = Ho3o = H3oo = — = — —4 +9 a—+ 8 a |
223 232 322 18j{3 < 341 3 J3 J1J2 J1 J3
U (37 2057 83hds”  205°8° aagas o
H = Hso3 = H3z2 = = - - — a+95; a” |
233 323 332 18]{3 <ji2+ 7 + 9 + 351 J1J2J30 + 9
1 2‘/4-/ 4-/2‘/2 1643 4-/ .73 ‘ Lo L
Hsss = ——g | -2 3 2205 05 TR 49330 4195 550+ 204155 a |-
36]1 ]1 .71 9 .71

Note that this is easily done if the conic has a rational point. Then the set of points on the conic can
be parameterized by a parameter . So in the worst case we have to go to a quadratic extension of
K to perform this step. The intersection consists of six points that are the zeroes of a polynomial
f(t) of degree 6 in the parameter ¢.

Lemma 5.53 (Mestre) The curve C' with Igusa invariants {1, jo, j3} can be given by the equation

where f is the polynomial of degree 6 constructed above.

We note that this is not the standard form for an equation of genus 2. But we can transform one of
the zeroes of f(x) to be the infinite point on C' and then find an equation

y? = f(x)

with f a polynomial of degree 5 for the curve C.
Until now we have done all computations over C. But Mestre’s result is a purely algebraic one,
and so we get:

Theorem 5.54 Let A be a principally polarized abelian variety defined over C with Igusa invariants
{j1,J2, ja}. Let Ky C C be a field containing these invariants and such that the conic Q(j1, jz2, j3)
has a K-rational point. Then A is the Jacobian variety of a curve C' of genus 2 defined over K.
Its equation is

y* = f(),

where f(z) is the polynomial of degree 6 from Lemma 5.53.
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Let K be an extension field of Ky such that f(x) has a zero xo in K. Then C as curve over K can
be given by the equation

y? = flx)

which is obtained by transforming the point (g, 0) to infinity.

5.1.6.c Hyperelliptic curves of genus 3

Let A be a principally polarized abelian variety of dimension 3. We assume that we know its period
matrix. So we know the theta constants and, by using a theorem of Mumford—Poor, we can decide
whether it is the Jacobian of a hyperelliptic curve (cf. [WEN 2001a, Theorem 4.3]. If so we want to
find the equation of the corresponding curve given in the form

C:y* = f(x)

where f(z) is a polynomial of degree 7.

In principle we can proceed as in the case of genus 2. Only things become more complicated.
One way proposed in [WEB 1997] is as follows. First one computes the Rosenhain model

yr=a(x—X)- (= A7)

of C' where the complex numbers A; are rational expressions in theta constants. Having this equation
one computes the Shioda invariants j1, js, Js, j7, jo, which determine the isomorphism class of C'
as curve over C.

Then a variant of Mestre’s method allows us to find an equation for C that is defined over field of
degree < 2 over Q(j1, Js, js, j7, Jo ). For details we refer to [WEB 1997] and [WEN 2001a].

Remarks 5.55

(i) In [WEB 1997] the theoretical results and the algorithms to compute curves are given
for hyperelliptic curves of genus < 5.

(i) Inthe elliptic case we went further. By using the Weierstra$} o function and its derivative
we were able to make (the inverse of) the Abel-Jacobi map explicit. In [KAM 1991] it
is shown that an analogous definition of Weierstrafl functions and its higher derivatives
can be used to achieve this for hyperelliptic curves of any genus.

5.1.6.d Hyperelliptic curves of genus 2 and 3 with CM

In the last section we have seen that the knowledge of the period matrix of a hyperelliptic curve C
of genus 2 or 3 makes it possible to compute its invariants and then to determine its equation in an
algebraic way.

We shall discuss now how the theory of CM-fields makes it possible to determine the invariants in
an algebraic way if Jc has complex multiplication. Though the ideas are quite analogous to those
that occurred in the case of complex multiplication of elliptic curves we need considerably more
technical details. The key ingredients were developed in the important book of Taniyama—Shimura
[SHTA 1961]. The reader who is interested in this deep and beautiful theory is encouraged to use
this book as reference for the whole section.

We shall begin by giving a very rough sketch of the general CM theory and then we shall apply it
to the special case of Jacobian varieties of hyperelliptic curves of genus 2 and 3.
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Abelian varieties to CM-types

A number field K with [K : Q] = 2g is called CM-field if K is an imaginary quadratic extension
of a totally real number field K.
Let ¢;, 1 < i < 2g be the 2¢ distinct embeddings from K into C. A tuple

(K, ®) := (K, {¢1,902,...,04})

is called CM-type, if all embeddings ¢; are distinct and no two of them are complex conjugate to
each other.

Let A ~ C9/A 4 be an abelian variety over C with End(A) ® Q ~ K. Hence A has com-
plex multiplication with ring of endomorphisms being an order O C K. We have to make the
identification of O with End(.A) more explicit.

Definition 5.56 Assume that the operation of « € O on A is given by the action of

p1()

pg(a)
on C9. Then A is an abelian variety of CM-type (K, ®) = (K, {¢1,- -+ ,¢4}).

Proposition 5.57 For every abelian variety A with End(A) ® Q ~ K there exists a CM-type
(K7 (I)) = (K7 {9017 T a@g})'

To ease things we restrict ourselves (as in the case of elliptic curves) to the case that End(A) = Ok,
the ring of integers in /.

Theorem 5.58 Let 2 be an ideal in O and let (K, ®) be a CM-type. Take

o(20) = { (p1(0), ..., ¢y(a)" | o € A}

in CY.

Then ®(2A) is a lattice in C9 and the torus C9/®(2l) is an abelian variety Ay ¢ which has complex
multiplication by O

The action of Ok on C9/P(A) is given by the action of the g-tuple

1(7)
with v € Ok

®q(7)

on CY. Conversely every abelian variety A of CM-type (K, ®) with complex multiplication by O
is isomorphic to an abelian variety Ag( ¢.

The proof of this theorem can be found in [SHTA 1961].

Principal polarizations

We are interested in Jacobian varieties and corresponding curves with complex multiplications and
so we need a finer structure: we want to construct principally polarized abelian varieties and we
have to determine isomorphism classes of abelian varieties with principal polarizations. For this it
is convenient to make an additional assumption that is very often satisfied: the maximal real subfield
Ky of K has class number 1, i.e., the ring of integers O, is principal.
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Lemma 5.59 Assume that the maximal real subfield K in the CM-field K has class number 1. Let
(K, ®) be a CM-type, 2 an ideal of O and Ag s the abelian variety attached to these data.
There exists a basis {a, . .., azg} of ®(2L) such that the Riemann form 5.22 is

0 I
[E(Ozz';aj)}lgi,jé?” - [ —1g g ] .

Hence the period matrix of Asg 4 lies in the Siegel upper half plane H, and we can endow Ay o
with a principal polarization determined by an element «y in K (cf. [LAN 1982]).

For a proof see [WEN 2001b].

Definition 5.60 We take the notations as in the Lemma 5.59. We shall write (Ag 3,7) for the
abelian variety corresponding to the ideal 2, the CM-type ® and the polarization attached to ~.

As in the case of elliptic curves, we now need a characterization of isomorphism classes of abelian
varieties with principal polarization that correspond to a given CM-type (K, ®).

For this we need some notation. Let K be a CM-field with CM-type ®. We assume that the
maximal totally real subfield has class number 1.

Let U™ denote the totally positive units of Ky (i.e., units u in O such thatforall 1 < j < ¢
we have ¢;(u) is a positive real number). Let U; be the image of the norm map from K to K
applied to the units in Ok . We denote by €1, ..., €4 a system of representatives for U™ /U;. Note
that the complex conjugation ~— generates the Galois group of K over K. Using our assumption
that the class number of K is 1 we get that for any ideal 21 of K the ideal 21 can be interpreted as
a principal ideal («) of K.

Definition 5.61 The subgroupgll((’)K) of the class group Cl(Og ) consists of the ideal classes ¢
that contain an ideal 2 with 22 = aOk with ¢, («) totally positive, i.e., ¢;(«) is a real positive
number for every 1 < i < g. The order of C1(O)’ is denoted by A/

We have the following theorem:

Theorem 5.62 Let (Ao, @,7) be a principally polarized abelian variety attached to Ok. Let
A1, ..,
2y, be a system of representatives for C1(Ok )" with 2;2(; = (a;) and «; totally positive. There
are hj.d isomorphism classes of principally polarized abelian varieties with complex multiplication
by Ok of CM-type (K, D).

d

Let Ko = |J K& with
=1

K = {(Aa,,e(ay) ) | i=1,...,h}.

The set K¢ is a set of representatives of the isomorphism classes of principally polarized abelian
varieties of CM-type (K, @).

Warning: principally polarized abelian varieties of different CM-types can be isomorphic.

Example 5.63 Consider the case where the principally polarized abelian variety has dimension two.
Here, the CM-field is an imaginary quadratic extension of a real quadratic field K.

If K is Galois, we get all isomorphism classes of principally polarized abelian varieties with
complex multiplication with Ok by choosing one CM-type.

If K is non-normal, we need two CM-types to get all isomorphism classes of principally polarized
abelian varieties.
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Class polynomials for hyperelliptic curves of genus 2 and 3

Recall from the previous paragraph that for elliptic curves with complex multiplication by O the
j-invariant lies in the Hilbert class field of the imaginary quadratic field K. Again the situation is
analogous but more complicated in the higher dimensional case.

We need the notion of the reflex CM-field K ([SHI 1998]), which for g = 1 is equal to K and in
general different from K. We shall not need the explicit definition of the reflex CM-field but use the
arithmetic information from class field theory to determine minimal polynomials for invariants.

Theorem 5.64 Let K be a CM-field of degree 4 over Q.

(1) The Igusa invariants j1(C), j2(C), j3(C) for hyperelliptic curves C' of genus 2 with
complex multiplication with the ring of integers O of K are algebraic numbers that lie
in a class field over the reflex CM-field K .

(ii) For hyperelliptic curves C' and C” with complex multiplication with O we get that for
k € {1,2, 3} the invariants j(C) and j, (C") are Galois conjugates.

(iii) Let {C1,...,Cs} be a set of representatives of isomorphism classes of curves of genus 2
whose Jacobian varieties have complex multiplication with endomorphism ring Ox . We
denote by ji(7) the k-th Igusa invariant belonging to the curve C;.

The three class polynomials

S

Hpp(X) = H(X —j,(:)),k‘ =1,...,3.
i=1

have coefficients in Q.

For hyperelliptic curves of genus 3 we get a completely analogous result.

Theorem 5.65 Let K be a CM-field of degree 6 over Q.

(1) The Shioda invariants j1(C), j3(C), j5(C), j7(C), jo (C) for hyperelliptic curves C' of
genus 3 with complex multiplication with the ring of integers Ok of K are algebraic
numbers that lie in a class field over the reflex CM-field K .

(ii) For hyperelliptic curves C' and C” with complex multiplication with O we get that for
ke {1,3,5,7,9} the invariants j;(C') and j;(C") are Galois conjugate.

(iii) Let {C1,...,Cs} be a set of representatives of isomorphism classes of curves of genus 3
whose Jacobian varieties have complex multiplication with endomorphism ring Ox . We
denote by ji (%) the k-th Igusa invariant belonging to the curve C;.

The five class polynomials

S

Hiw(X) = [[(X —4), ke {13,579}
i=1

have coefficients in Q.

Denominators in the class polynomials

The careful reader will have remarked that — contrary to the elliptic case — we did not claim in
Theorems 5.64 and 5.65 that the class polynomials have integer coefficients. In fact this is wrong.
There are two reasons for this. First, small primes occur (for ¢ = 2 up to 5 and for g = 3 up to
7) because we did not normalize the invariants in a careful enough way. But much more serious is
the second reason: it may happen that the Jacobian of a curve has good reduction modulo a place



108 Ch. 5 Varieties over Special Fields

p of the field over which it is defined but the curve does not have good reduction. The curve may
become reducible modulo p.

There are famous conjectures about the arithmetic of curves over number fields related to the
ABC'-conjecture that this should occur only for places with moderate norm.

In practice this is confirmed. So to compute the coefficients of the class polynomial one computes
a real approximation with high precision and then determines the denominator using the continued
fraction algorithm.

Reduction of hyperelliptic curves of genus 2 and 3 with complex multiplication

The invariants of a hyperelliptic curves of genus 2 or 3 with complex multiplication with a CM-field
K are zeroes of polynomials over Q. Let us choose a prime p that does not divide the denominator
of the coefficients of these polynomials. Then we can reduce the class polynomials modulo p.

We can factor the resulting polynomials over [F), and find zeroes in an extension field F,. By
Galois theory we see that the class polynomials will split in linear factors over F,. Combining
“related” zeroes we get systems of invariants for which the resulting curves C; have a Jacobian
variety with ring of endomorphisms containing an isomorphic copy of Ox.

So, we have very explicit information about the endomorphisms of the Jacobian variety of C,,
which are defined over (possibly a quadratic extension of) F,. Class field theory of CM-fields can
be used to identify the Frobenius endomorphism.

We explain the easiest case, which is the most important one for practical use: we assume that
the genus of Cj is equal to 2 and that ¢ = p.

Theorem 5.66 Let K be a CM-field of degree 4 and assume that p is a prime > 7, which does not
divide the denominator of the class polynomials H 1, (X) =: Hg(X).

« For every w € O with ww = p the polynomials Hy (X ) have a linear factor over F),
corresponding to w.

« Let jj be a zero of Hy(X) modulo p. There are two [F,-isomorphism classes A, 1 and
Ap .2 of principally polarized abelian varieties over IF,, with Igusa invariants jj.

« The principally polarized abelian varieties A, ; and A, 2 have complex multiplication
by O K-

« The number of [F)-rational points of A, ,,,,m = 1,2 is given by

4

H(l + (‘Umwv)

=1

where w = w; and w; are conjugates of w.

+ The equation ww = p with w € O has (up to conjugacy and sign) at most two different
solutions, i.e., for every CM-field of degree 4 there are at most four different possible
orders of groups of IF,,-rational points of principally polarized abelian varieties, defined
over [F}, with complex multiplication by Ok

For genus 3 an analogous result holds. We refer the interested reader to Weng [WEN 2001a].

5.2 Varieties over finite fields

In this section we shall deal with varieties defined over finite fields. We assume that the ground field
K isequalto F, with ¢ = .
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5.2.1 The Frobenius morphism

In this section, we consider two extension fields of F,. We assume K = F, with ¢ = pd, and
consider an arbitrary power gb’; of the absolute Frobenius automorphism, which fixes the elements
of F,x C F,. We recall the definition of the Frobenius endomorphism and its action on varieties
over IF, given in Example 4.39, which we shall need in a slightly more general way.

Take £ € N and let ¢,x be the Frobenius automorphism of the field F,x, sending o € Fx
to 7 (a) = ar". We can extend ¢y to points of projective spaces over IE‘ » by sending pomts
(Xo,...,Xp) to (Xé’ . ¢ 4 p* ). We apply ¢pr to polynomials with coefﬁ01ents in the algebraic
closure F,, of F,, by applylng it to the coefficients.

If V' is a projective variety over I, with ideal I we can apply ¢, to I and get a variety ¢,« (V')
with ideal ¢,« (I). The points of V' are mapped to points on ¢,,» (V).

The corresponding morphism from V' to ¢,,x (V') is called the Frobenius morphism with respect
to the field F)» and is again denoted by ¢,x. Itis the k-th power of the absolute Frobenius ¢,,.

We note that though ¢, is by definition a Galois group element it induces a morphism from V' to
¢px (V). We recall that in the language of function fields the corresponding rational map gf)* from
K(¢px(V)) is given as follows: choose an open affine part of V' and afﬁne coordinate functlons
1,...,Tn; then the image of ¢, in K (V') is generated by .. x” .

It follows that this rational map is purely inseparable of degree pk dim(V),
In general ¢« (V) will not be isomorphic to V. But if d divides k then V' = ¢,,» (V') since then

dor () = 1

Proposition 5.67 Let s be a natural number such that ks is divisible by d. Put Vj := V and for
i=1,...,5 — ldefine V; := ¢,»(Vi_1).
Then we get the chain of morphisms

bk bk @

V:%LV&L k &k

= Veor = Vo=V
each being purely inseparable of degree p* im(V),

The composite of the morphisms is ¢,

Hence for k = 1 we get a decomposition of ¢, into a chain in which the absolute Frobenius
endomorphism occurs.

5.2.2 The characteristic polynomial of the Frobenius endomorphism

We assume now that C' is a projective absolutely irreducible nonsingular curve over [, of genus
g = 1. As seen above the Frobenius endomorphism operates on the rational functions on C, on
the points of C' and — by linear continuation — on the divisors of C. It maps principal divisors to
principal divisors and preserves the degree of divisors. So it operates in a natural way on P1cc, ,
the divisor class group of degree 0 of the curve C over I,

From the results in the last paragraph and from the fact that the Galois group of I, is (topologi-
cally) generated by ¢, we get:

Proposition 5.68 The Frobenius morphism induces a homomorphism of Pic%F and hence an en-
domorphism, also denoted by ¢, of the Jacobian variety Jc defined over FF,,.

This endomorphism is an isogeny that is purely inseparable of degree ¢9.

The elements fixed by ¢ in Jo 5, ) are Jo(Fq) = Picl.. Hence J(F,) is the kernel of Id 5, — ¢,
and |Pick| = deg(Id j. — b,).
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Now recall that for primes ¢ different from p we have attached a Galois ¢-adic representation p s, ¢
induced by the action of Gy, on points of order ¢k of Jo Theorem 4.82. In fact, we have to replace
the field I, by I, and the absolute Frobenius endomorphism by the relative one ¢, but all the results
about (-adic representations of Galois elements and endomorphisms remain true after this change.

We associate to ¢, the characteristic polynomial x (77(¢,)) Jo (T) of pye, e(Pq), which is a monic
polynomial of degree 2¢g with coefficients in Z and it is independent of the choice of £.

Definition 5.69 The polynomial x (&), (T) := x(T¢(¢q)) Jo (T) is the characteristic polynomial
of the Frobenius endomorphism ¢, on C and of Jc. To simplify notation we also use x (¢q)z(7") to
denote it.

Since we know that deg([1] — ¢4) = x(¢q)c (1) we get:
Corollary 5.70 The order of Picg, or equivalently, of Jo(F,) is equal to x (¢4 )c(1).

Hence the determination of the number of elements in Pic% is easy if we can compute the charac-
teristic polynomial of the Frobenius endomorphism on C'.
The following remark is very useful if we want to compute this polynomial.

Lemma 5.71 For n prime to p the restriction of ¢, to Jc[n] has the characteristic polynomial
X(¢q)c(T) (mod n).

Corollary 5.72 The endomorphism x(¢q)c(¢4) is equal to the zero map on Jc.

There are two distinguished coefficients of the characteristic polynomial of a linear map: the abso-
lute coefficient, which is (up to a sign) the determinant of the map, and the second highest coeffi-
cient, which is the negative of the sum of the eigenvalues and is called the trace of the map.

In our case we know that x(¢,)c(0) = ¢9 since the degree of ¢, as endomorphism on J¢ is

qdim(Jc)'

The trace of x(¢4)c(T) is called the trace of the Frobenius endomorphism on C and denoted by
Tr(¢q).

Example 5.73 Let E be an elliptic curve over F,,. Then x(¢,)g(T) = T? — Tr(¢4)T + g, and so

|E(Fq)| = q+1—Tr(d).

5.2.3 The theorem of Hasse-Weil for Jacobians

The following results are true for arbitrary abelian varieties over finite fields. We shall state them
only for Jacobians of curves C' of genus g > 0.

Definition 5.74 The zeroes A1, ..., Aog of X(¢q)c(T) are called the eigenvalues of the Frobenius
¢qon C and on Jc.

By definition the eigenvalues of ¢, are algebraic integers lying in a number field of degree < g.
The product is equal to

Because of the duality on Jacobian varieties (or as a consequence of the theorem of Riemann—
Roch [STI 1993]) one can make a finer statement.
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Proposition 5.75 We can arrange the eigenvalues of ¢, on C' such that
forall i=1,...,9 wehave Ay =gq.

But there is a much deeper result. It is the analogue of the famous Riemann hypothesis for the Rie-
mann (-function and it says that the absolute value of each eigenvalue \; interpreted as a complex
number is, for every curve C of arbitrary positive genus g, equal to \/q.

This result was proved by Hasse for elliptic curves and by Weil for abelian varieties. A gen-
eralization for arbitrary varieties over finite fields was formulated by Weil. One of the greatest
achievements of mathematics in the twentieth century was the proof of these Weil conjectures by
Deligne.

The general philosophy is that the number of rational points on varieties over finite fields should
not differ “too much” from the number of points of the projective spaces of the same dimension, and
the difference is expressed in terms of the size of the trace of the Frobenius endomorphism acting
on attached vector spaces like Tate modules, or more generally, cohomology groups.

Let us come back to our situation and resume what we know.

Theorem 5.76 Let C be a projective absolutely irreducible nonsingular curve of genus g > 0 over
Fy. Let A1, ..., Aoy be the eigenvalues of the Frobenius endomorphism on C.

(1) Each ); is an algebraic integer of degree < 2g.
(i) We can numerate the eigenvalues such that for 1 < ¢ < g we have

)"i)‘i+g = (.

(iii) For 1 < i < 2g take any embedding of ); into C. Then the complex absolute value |\;|
is equal to /q.

For the proof of these fundamental results about the arithmetic of curves and abelian varieties we
refer to [STT 1993] or, in a more general frame, to [MUM 1974, pp. 203-207].

Corollary 5.77 Let C'/F, be a curve of genus g. If
Jo(Fy)[n] 2 (2/nZ)'

for some t > g then

n|q—1.
Proof. We find ¢ linear independent D1, . .., D; elements in J¢ (I, ) [n], which lie in the eigenspace
pJcn(Pg) with eigenvalue 1 (mod n). Hence, there is a 1 < ¢ < g such that \; and A1, are both
equivalent to 1 modulo n. Since A\; A4 = ¢ we have ¢ = 1 (mod n). O

We can combine this corollary with Theorem 4.73 to get the following proposition.

Proposition 5.78 Let C'/F, be a curve of genus g. For the structure of the group of F-rational
points on the Jacobian we have

Jo(Fg)[n] = Z/miZ X Z/noZ X - - - X L/nogZ,
where n; | n;y1 forl <i < 2gandforalll <i < gonehasn; |q— 1.

From the Theorem 5.76 we obtain bounds on the number of points on the curve and its Jacobian.
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Corollary 5.79 Let C be as in Theorem 5.76.

Then
29

H(1 —Ai) — ¢’

1=1

| IPic}| —¢?| =

=0 (qg_l/Q) i

Take & € N. Since ¢ x = (b’; we can extend this result:

Corollary 5.80 The number Ny of I x-rational points of J¢, or equivalently, the number of ele-
ments in Picl p . is estimated by
q

29

[T =5 ¢

i=1

’Nk —qgk’ =

—0 (qugfl/z)) .

This corollary can be used to compute the (-function of the curve C' [STI 1993] and to get a bound
for the number of rational points on C'.

Corollary 5.81 Let C be as above.
Then

[|IC(Fy)| — g — 1] < 294

The estimates for the number of elements of Pic, and of C/(IF,,) are called the Hasse—Weil bounds.
In fact the Serre bound gives the sharper estimate

[C(F)l =g -1 <gl2V4].

When one wants to compute the characteristic polynomial of the Frobenius endomorphism it is
very important that one has ad hoc estimates for the size of the coefficients of this polynomial.
Again Theorem 5.76 can be used in an obvious way to get

Corollary 5.82 The characteristic polynomial of ¢, has a very symmetric shape given by
X(6g)c(T) =T + ey T - 4 a,T9 + -+ a1¢? " T + ¢,

where a; € Z,1 <1 < g.
The absolute value of the i-th coefficient of x(¢q)c(T') is bounded by (*7)q(29-9)/2,

Example 5.83 Let I be an elliptic curve over F,. The eigenvalues A\; and A2 of ¢, on E are
algebraic integers of degree < 2 with absolute value |A\;| = /g and A;\2 = ¢. The number of
points in E(FF,) is estimated by

[E(Fg)| —q—1]<2Vq.

The interval [-2,/q + ¢ + 1,2./q + q + 1] is called the Hasse—Weil interval. All elliptic curves
defined over I, are forced to have their number of rational points lying in this interval.

5.2.4 Tate’s isogeny theorem

We end this section by stating deep results due to Tate and Tate—Honda [TAT 1966], which demon-
strate the importance of characteristic polynomials of Frobenius endomorphisms.
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Theorem 5.84

(i) Let A and A’ be abelian varieties over F,. Then A is isogenous to A" over F, if and only
if X(¢¢)A(T) = x(¢g).a (T).

(ii) Assume that Aq, ..., Ao, are algebraic integers lying in a number field of degree < 2g and
satisfying the properties of eigenvalues of Frobenius endomorphism as stated in Corol-
lary 4.118. Then there is an abelian variety .4 over Fy such that A, ..., Ay, are the
eigenvalues of the Frobenius endomorphism on .A.

Note that this abelian variety need not be principally polarized, and if it is, it need not to be a
Jacobian of a curve.

Maisner and Nart [MANA 2002] study the problem to decide whether Ay, ..., Ay4 belong to a
hyperelliptic curve.
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6.1 General duality results

Let C' be a curve of genus g defined over a field K with Jacobian variety Jc.

As mentioned in Section 5.1.3 there is a duality theory of abelian varieties, and Jacobians are
self-dual. Hence, the points of order n form an abelian group V' = Jc[n] endowed with a natural
bilinear map.

We have already treated the case when the characteristic of K is p and n = p (although without
emphasizing the duality theory behind it) and we have seen in Proposition 4.132 that we can identify
V = Jc[p] with a subgroup of the additive group K291,

We shall therefore assume from now on that n is a natural number prime to p. In this case the
duality of J- induces a nondegenerate pairing on Jo[n] with values in the group of n-th roots of
unity fin, so Jo[n] becomes self-dual with respect to this pairing. In fact this pairing was well-
known already in “classical times” for K = C. It is related to Riemann forms and is discussed in
[MUM 1974, Section 20]. It is defined for arbitrary principally polarized abelian varieties and given
in an explicit form on p. 187 of that book. Using this explicit form it is easy to generalize the pairing
in the abstract setting of abelian varieties by the same formulas. In the case of elliptic curves this
can be found in [STL 1986]. The resulting pairing is called the Weil pairing.

The Weil pairing has very nice properties that can all be found in [MUM 1974]. It is defined as
pairing on the group of torsion points of order n prime to p and it is compatible with the natural
maps from Jc[n] to Jo[n'] for n’ dividing n. Hence taking n = ¢ it can be extended to a pairing
of Tate modules 7 (J¢).

115
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Moreover, the pairing is compatible with the action of the absolute Galois group Gi of K. A useful
consequence is that Jo[n] (K) = Jo(K)[n] implies that K contains the n-th roots of unity. (If K
is a finite field we find another argument in Corollary 5.77 to see this).

One disadvantage is that the Weil pairing is skew symmetric. This implies that there are subspaces
of dimension g in Je[n] such that the restriction of the pairing vanishes identically (“maximal
isotropic subspaces”). So we need the rationality of many n-torsion points in order to get subspaces
of Jo[n] on which the Weil pairing is nondegenerate.

Nevertheless the Weil pairing is a possibility for constructing a bilinear structure on DL systems
inside abelian varieties. In this book however we shall prefer a derived pairing which, for our
purposes, has nicer properties both from the theoretical and from the computational point of view:
the Tate pairing.

6.2 The Tate pairing

We shall begin by giving the general background for the construction of the Tate pairing. It involves
Galois cohomology, hence requires some knowledge of nonelementary algebra. We shall then spe-
cialize more and more, and in the end we shall obtain a description of the pairing in the cases that
are of interest to us. At this point, it is quite elementary and does not use any advanced ingredients.
We advise the reader who is only interested in applications to skip as much of the following as he
(dis-)likes and in the worst case to begin reading Section 6.4.

After this warning we begin with the theory. We are interested in Jacobians but to define the Tate
pairing we use results that are true for arbitrary abelian varieties A defined over K. For simplicity
we shall assume that A is principally polarized and so it is isomorphic to its dual variety (as is true
for Jacobians). The assumption that n is prime to p implies that the Kummer sequence

0 AE) ] —AE) Ha® o ©.1)

is an exact sequence of G'x-modules.
We can therefore apply Galois cohomology and obtain the exact sequence

0— A(K)/nA(K) > H' (Gk, A (K) [n]) & H' (Gk, A (K)) [n] — 0.

Since this is an important sequence both in theory and in practice we explain it in more detail.

Recall that for a G'x-module M the group H" (G i, M) is a quotient of the group of n-cocycles
(i.e., of maps c from the n-fold Cartesian product G to M satisfying a combinatorial condition)
modulo the subgroup of n-coboundaries. Whenever needed we shall give an explicit description of
the cohomology groups that occur.

Example 6.1 Obviously 1-cocycles are maps
c:Gg — M
such that for all o, 7 € G we have
c(or) = c(o) + oc(7)

and 1-coboundaries are maps
c:Gg — M

such that there exists an element m € M with
c(o)=0c-m—m

forallo € Gg.
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Let P € A(K). There exists a point Q € A (K) such that [n]Q = P. Define

§'(P): Gk — A(K)|[n]
o — o0-Q—Q.

We easily check that §’(P) is a 1-cocycle with image in A (K) [n] and that another choice of @’ with
[n]Q" = P changes this cocycle by a coboundary and so we get a well defined map from A(K)
to H' (G, A (K) [n]). Another immediate check shows that the kernel of this map is exactly
[n]A(K). This explains the first part of the Kummer sequence.

We now use the injection of A (K) [n] into A (K) to interpret cocycles with values in A (K) [n]
as cocycles with values in A (F) Going to the quotient modulo coboundaries gives the map .
Since the arguments of the induced cocycles are points of order n it follows that the image of « is
contained in the subgroup of H' (G, A (K)), which is annihilated by the map “multiplication by
ny

We can check, either directly or by using properties of cohomology, that « is surjective and that
the kernel of « is equal to the image of 4.

Next we use that A (F) [n] is self-dual as a G x-module under the Weil pairing, which we denote
by W,,. We obtain a cup product

U: H' (Gg,A(K)[n]) x H' (Gx, A (K) [n]) — H*(Gx,K ) [n]

in the following way:
Represent (1, (, € H' (GK, A (f) [n]) by cocycles ¢y, ¢o. Then (3 U(s is the cohomology class
of the 2-cocycle
C: GK X GK — F*

given by
C(O’l, 0'2) = Wn(cl(ol), 62(02)).

This map U is bilinear.
We can apply this to a point P € A(K) and a cohomology class v € H! (GK, A (K)) [n] to
define the Tate pairing

(-, )7n t A(K) /nA(K) x H' (G, A (K)) [n] — H*(Gg,K ) [n]

by
(P +nA(K),v)1,n = 6(P +nA(K)) Ua" (7).

It is routine to check that (-, -} ,, is well defined and bilinear.

Remark 6.2 The Tate pairing relates three very interesting groups occurring in Arithmetic Geom-
etry: the Mordell-Weil group of A, the first cohomology group of A, which can be interpreted
as group of principally homogeneous spaces over A, and H?> (G K, F*), the Brauer group of the
ground field K, which can be interpreted as group of classes of central simple algebras with center
K with the class of full matrix groups as neutral element.

6.3 Pairings over local fields

We now assume that K is a local field (e.g., a p-adic field) with finite residue field F,.
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6.3.1 The local Tate pairing
We have the beautiful result of Tate [TAT 1958]:

Theorem 6.3 Let A be a principally polarized abelian variety over K, e.g., A = J¢.
Let
(-, Vrn : A(K) /nA(K) x H' (G, A (K)) [n] — H*(Gg, K ) [n]

be the Tate pairing as defined above. Then (-, -)7,, is a nondegenerate Z-bilinear map.

It is thus certainly worthwhile to study in more detail the groups that are involved.

To simplify the situation we shall assume that A has good reduction, i.e., we find equations for
A with coefficients in the ring of integers of K whose reductions modulo the valuation ideal of K
again define an abelian variety over [F,. This situation is typical for the applications that we have
in mind. In fact we shall begin with an abelian variety over I, and then lift it to an abelian variety
over K. This motivates a change of notation: A — A and the reduction of A is now denoted by A.

Let us consider the first group occurring in Tate duality. Using Hensel’s lemma we get

A(K)/nA(K) ~ A(F,)/nA(F,).

Remark 6.4 If we assume that n = / is a prime and that A(F,) has no points of order ¢* then
A(F,)/¢A(F,) is isomorphic to A(F,)[¢] in a natural way.

We now come to the discussion of H* (G K, A (f)) [n]. Since unramified extensions of K do not
split elements in this group we can use a well-known inflation-restriction sequence to change our
base field from K to the maximal unramified extension K" of K, compute the cohomology group
over this larger field, and look for elements that are invariant under the Galois group of K" /K
which is topologically generated by (a canonical lift of) the Frobenius automorphism ¢, of F,.
Note that this automorphism acts both on G (K /K™") and on A[n] = A(K™)[n].

Let Kiame be the unique cyclic extension of K" of degree n (which has to be fully ramified).
We obtain

Proposition 6.5 The first cohomology group H' (G, A (K)) [n] is equal to the group of elements
in
Hom (G (Krame/K"™), Aln]),

which are invariant under the natural action of the Frobenius automorphism.

After fixing a generator 7 of G(Ktame/ K" ) we can identify
1 € Hom(G(Kiame/K™), Aln))

with
(1) =: P; € Aln|
and hence Hom(G(Kiame/K"™), A[n]) with A[n].

Warning: The identification of Hom(G(Ktame/K"™), A[n]) with A[n] is, in general, not com-
patible with Galois actions. Here the cyclotomic character becomes important: over K (j,,) we can
realize a ramified cyclic extension K ,, of degree n by choosing an n-th root ¢ of a uniformizing ele-
ment 7 of K. Since 7 maps t to (,,t for some n-th root of unity ¢,, and the Frobenius automorphism
¢ maps (,, to (2 we deduce that ¢, operates on (7) by conjugation, sending 7 to 77 9.

Corollary 6.6 The first cohomology group H' (G, A (K)) [n] can be identified with the sub-
group Ay of points in A[n| defined by

Ao = {P € A[n] | ¢4(P) = [q]P}.
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We summarize what we have found up to now in the case where 7 is a prime £.

Proposition 6.7 Let K be a local field with residue field F,, let A be an abelian variety defined
over Fg, let £ be a prime number not dividing ¢, and assume that A(F,) contains no elements of
order (2. Define Ag = {P € A[(] | ¢,(P) = [q] P}.

The Tate pairing induces a nondegenerate pairing

() s A(Fg) €] x Ao — Br(K)l[].

Corollary 6.8 Under the assumptions of the propositions we get that A is (as an abelian group)
isomorphic to A(F,)[¢].

Example 6.9 Assume that A[¢](IF,) is cyclic of order ¢ and generated by P.

1. Assume that £ | (¢ — 1). Then Ay = A[(](F,), and (P, P)r, ¢ # 0.

2. Assume that £ { ¢ — 1. Then ¢ with ¢(7) = P is notin H* (Gg, A (K)) [(]. In
particular ”(P, P)7 ¢ is not defined. Of course we can extend the ground field until
the pairing over these larger fields permits the argument (P, P). But the value will then
necessarily be equal to 0.

Example 6.10 If A[¢](F,) is not cyclic and ¢ | ¢ — 1 then for all points P, Q € A[¢](F,) we can
form (P, Q)1 ¢ but it is not clear whether there is a P with (P, P)p, # 0.

We now come to the discussion of the Brauer group. First one has

Theorem 6.11 The Brauer group of K is (canonically) isomorphic to Q/Z.
More precisely, there is a map, the invariant map invg, such that for all n € N we have an
isomorphism
inv : Br(K)[n] — Z/nZ.

Thus computations in Br(K’) boil down to the computation of the invariant map. A further study
of the theory of local fields shows that this is closely related to the computation of the discrete
logarithm in F; (see [NGU 2001])).

This becomes more obvious if we replace F, by F,(y,) = Fg» with & minimal such that n |
(¢"—1). Put K; = K(p,,) and let K,, be a cyclic ramified extension of degree n of K. The value of
the Tate pairing is then in H?(G(K,/K), K})[n], and elementary computations with cohomology
groups yield that this group is isomorphic (canonically after the choice of 7) to IE‘Zk / (sz ) "

Proposition 6.12 Let n be equal to a prime number ¢, and let k be as above. Assume that A(F,)
contains no points of order /2.
The Tate pairing induces a pairing

()1t AL(F,) x Al(Fge) — Fin/ (F2)"

which is nondegenerate on the left, i.e., if (P, Q)7 ¢ = 0 forall Q € A[{](F ) then P = 0.

6.3.2 The Lichtenbaum pairing on Jacobian varieties

In Proposition 6.12 we have described a pair}ng that can, in principle, be used to transfer the dis-
crete logarithm from A[(](F,) to . / (F;k) ". However, looking at the conditions formulated in
Section 1.5.2 we see that one crucial ingredient is missing: we must be able to compute the pairing
very fast.
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The next two sections are devoted to this goal in the case that we are interested in.

We come back from the general theory of abelian varieties to the special theory of Jacobian
varieties .JJ¢ of projective curves C' of genus g over finite ground fields [F.

We want to use the duality theory over local fields and so we lift C' to a curve C of genus g over
the local field K with corresponding abelian variety J=. We remark that the reduction of Jz is Jc.

The central part of the construction of the Tate pairing was the construction of a 2-cocycle from
G2 into K. Fora point P € Jx(K') and an element v € H! (GK, J& (f)) [n] we choose a
1-cocycle ¢ in a1 (7) and define

0(0'1,0'2) = W7L(5I(P)(Ul)7c(02))

where ¢’ and « are the maps defined in Section 6.3.1 and W, is the Weil pairing.

In his paper [LIC 1969] Lichtenbaum used sequences of divisor groups of curves to define a
pairing in the following way.

Put C' = C' x K. We have discussed the group of divisor classes of degree 0 of C together with
the action of Gk on this group in Section 4.4.4. As a consequence we get the exact sequence of
G — K-modules (see 6.1)

1 — Princg — Div& — Pick — 0.

We can apply cohomology theory to this sequence and obtain a map
61 : HY(Gg,Pick) — H?(G g, Prince)

which associates to y € H' (G, Pick) a 2-cocycle from G% to Prince. o
In other words, given «y we find for each pair (01, 02) € G afunction fo, », € K (C) such that
the class of (fs, 0,; (01,02) € Gk ) is equal to §1 (7).

Definition 6.13 The notations are as above. Let ¢ € Pic% be a K -rational divisor class of degree 0
with divisor D € c.
The Lichtenbaum pairing

(-,)p : Pick x H' (G, Pick) — H*(Gk,K )
maps (¢,7) to the class in H2(G g, K ) of the cocycle
G - K
given by

(UlaUQ) = f<71702 (D) .

(Here D has to be chosen such that it is prime to the set of poles and zeroes of f,, »,, Which is
always possible.)

Since we have seen that J¢& (F) = Pic% we can compare Tate’s pairing with (-, -) .. It is shown
in [LIC 1969, pp. 126-127], that the two pairings are the “same” in the following sense.

Proposition 6.14 For all natural numbers n denote by (-, -)r,, the pairing induced by (-,-) on
Pic% /nPick x H(Gk,Picg)[n].
Then (-, -)1,» is equal (up to sign) to the Tate pairing (-, -)7,, applied to the abelian variety J.

In fact, Lichtenbaum uses this result to prove nondegeneracy of his pairing for a local field K.

The importance of Lichtenbaum’s result for our purposes is that we have a description of the
Tate pairing related to Jacobian varieties that only uses objects directly defined by the curve C'. In
particular the Weil pairing has completely disappeared.
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We can now use the general considerations given in Section 6.3.1 and come to the final version of
the pairing in the situation that we are interested in. _

Thus we come back to a curve C' defined over [, choose a lifting to C over K, and compute the
groups occurring in the pairing. As a result we shall obtain a pairing that only involves the curve C'
itself.

The first group can be identified with Picg /nPic%. To avoid trivial cases we shall assume that
this group is nontrivial, i.e., that Pic% contains elements of order n.

The group H' (G, Pick)[n] can be identified with the subgroup .J of points in Pic[n] defined
by

Jo = {c € Picg[n] | ¢4(c) = [g]c} .
A first application of these results is that we can describe the Lichtenbaum pairing by Galois coho-
mology groups related to a finite extension of K. We first enlarge K to a field K that is unramified
and such that over its residue field all elements of J; are rational. Automatically K; contains the
n-th roots of unity. It follows that there exists a cyclic ramified extension K, of degree n of K.

The image of the pairing (-, -) 1, ,, will be contained in H? (G(K, /K1), K}). Let us fix a gen-
erator 7 of the Galois group of K,, /K. We identify v in H'(G, Pick)[n] with the class of the
cocycle ¢ from G(K,, /K1) given by

C(7") =Ti]é for 0<i<n—1,

where ¢ € Pz’c%xK [n] is a lift of ¢ € Jo.

The image of under the map 61 will be a 2-cocycle mapping from (1) x (7) to Princg,
which we must describe. Choose a divisor D € ¢ rational over K;. ThusiD € ¢ (7")

By definition

61(v) (7',77) = 7§D — ri1 ;D + jD
for0 < ¢,j5 < n — 1, where r;; is the smallest nonnegative residue of ¢ + j modulo n.

Since 7D = D it follows that 61 (y) (7°,77) = 0 fori + j < nand 6(v) (7, 77) = nD for
1+ 7 = n. Since D is a divisor of degree 0 in a class of order n the divisor nD is the divisor of a
function fp (which is defined over K7).

Now choose ¢1 € Pic% and a divisor E/ € ¢; such that F is prime to D.

Then

(¢1 + nPic%,’y)L,n (Ti, Tj) =1
ifi + 7 < nand
<51 + nPic%, '7>L,n (Ti, Tj) = fD(E)
ifi+7 > n.

Thanks to this result we can immediately identify the element in the Brauer group of K; which
corresponds to (¢1 + nPic%, )Lt it is the cyclic algebra split by K, corresponding to the class
of the pair (7, fp(E)) (cf. [NGU 2001]). If we fix 7 the class is uniquely determined by the norm
class fp(E) Nk, /i, (K};).

Since K, /K is totally ramified we can compute Ny /K, (K}) to be (canonically) isomorphic
o Fr/ (Fr)".

Hence (¢4 +n nPic%, 7) L,n is uniquely determined by the image of fp(E) in the residue field I
modulo (F;k) "

We can obtain this image directly: choosing ¢; € Pic% ,E €ci,c€ Jy, D € ¢,and fp a
function on C' defined over Fqk with no zeroes and poles in divisors of F, we have

<51 + nPic%,’y}L,n = fD(E) (F;k)n
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6.4 An explicit pairing

6.4.1 The Tate-Lichtenbaum pairing

We have done all the necessary work so as to be able to describe the Tate pairing in the Lichtenbaum
version for abelian varieties, which are Jacobian varieties of projective curves, in a very elementary
and explicit manner as promised in the beginning of this section. In order to use it, no knowledge
of the preceding sections is necessary. In fact, even the proof of the following theorem can be given
without using Galois cohomology and liftings to local fields by a clever application of Kummer
theory to function fields over finite fields (cf. [HES 2004]). Nevertheless we think that it may be
interesting for some readers to see the structural background involved.

Theorem 6.15 Let [F, be the field with ¢ elements, let 2 be a number prime to ¢, and let k € N be
minimal with n | (¢* — 1). Let C be a projective irreducible nonsingular curve of genus g defined
over [, with a rational point.

Define

Jo = {e € Picd, 5 [n] | ¢y(c) = [gle}.

There exists a nondegenerate bilinear map
T, : Picd/[n]Pick x Jo — Fi/(Fie)"

defined in the following way:

Forc, € Pic% and co € Jy we choose divisors I/ € ¢; and D € co rational over I, respectively
IF,« such that no point P of C' occurs both in ' and in D. Let fp be a function on C' rational over
= with principal divisor n.D.

Then

To(cr,¢2) = fo(E)(Fi) "

Definition 6.16 The Tate—Lichtenbaum pairing is the bilinear map
T, : Pic% /[n]Pic? F* [ (F%5)"
w : Picg /[n]Pice x Jo — Fri / (Frx)
described in Theorem 6.15.

Let us consider this pairing from a computational point of view. It is not difficult to find divisors D
and F for given ¢, co. However, for large n it is not obvious how to find fp and how to evaluate it
at I/. In Chapter 16 we shall give a polynomial-time algorithm to perform this computation. Here
we describe very briefly the theoretical background of this algorithm.

We must solve the following task: Let C be a curve of genus g defined over some ground field K
with a K -rational point P, let E be a K -rational divisor of degree 0 on C' and ¢ a K -rational divisor
class of degree 0 and of order n on C. Let D1 = Ay — gPy € cbe adivisor, where A; is an effective
divisor of degree g. Any multiple [i]c can be represented in a similar way by D; = A; — gFPy. We
assume that the support of E is prime to the support of all divisors D;. In particular the divisor
n D1 is the principal divisor of a function f on C, which has no poles and zeroes at the points of the
support of E. Hence ¢(FE) = f(E) is a well defined element of K*.

We want to compute this element fast, and we follow an idea that for elliptic curves has been
described by Miller in an unpublished manuscript [MIL 1986] (now published in [MIL 2004]), and
which, in the general case, is inspired by Mumford’s theory of Theta groups of abelian varieties.

The basic step for the computation is the following. For given positive divisors A, A" of degree g
find a positive divisor B of degree g and a function 4 on C such that A + A’ — B — gPy = div(h).
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Define the following group law on {(c) x K*:
(ic,a1) o (je,az) == ((z +7)e, alaghi,j(E)),

with A;+A; — A;y; — gPy = div(h; ;). The assumptions on E guarantee that each h; ;(E) € K*,
and the degree of h; ; is at most equal to g. It can be easily seen by induction that m - (¢, 1) =
(mc hm,l(E)), where h,,—1 is a function on C satisfying mA — A,,,—1 — (m — 1)gPy =
div(hpm—1). It follows that repeating n times this process gives the result (0, f(E)), where f is
a function on C such that div(f) = nD;.

We can now use the group structure on (¢) X K* and apply the square and multiply algorithm to
evaluate f at £ in O(lg n) basic steps.

Corollary 6.17 The Tate-Lichtenbaum pairing 7}, can be computed in O(Ig n) basic steps over I ;.

Remark 6.18 By a clever choice of Py we can accelerate the computation. For instance, with
hyperelliptic curves, we shall choose the point at infinity P...

6.4.2 Size of the embedding degree

Recall that n is a number prime to q. The embedding degree (with respect to n) is the smallest
number & such that n | ¢¥ — 1.

The above result is of practical importance only if & is small.

In general, the necessary conditions for C' such that Pic% has elements of order ¢ rational over I,
with £ in a cryptographically interesting range, and the conditions for ¢ that for a small & the field
Fqk contains /-th roots of unity, will not be satisfied at the same time.

To see this we look at x (¢,r )c(T'), the characteristic polynomial of ¢ . Its zeroes (A1, . .., Azg)
are integers in a number field K and we order them so that \;A\;4; = g for 1 < i < g, which is
always possible (cf. Proposition 5.75).

Since Picy, has elements of order / there exists an eigenvalue \; of ¢, such that a prime ideal [
of K dividing (¢) divides (1 — ;). Of course this implies that for all natural numbers d the ideal [
divides (1 — \%).

Now assume that F « contains the /-th roots of unity and hence that ¢® = 1 (mod ¢). Since
AfAE . = ¢" =1 (mod I) we get that the prime ideal [ divides simultaneously (1 — A}) and
(1-— )‘ngi) and so

AF+AF, =2 (modl).
For elliptic curves this yields

Proposition 6.19 Let I be an elliptic curve defined over I, and ¢ a prime such that ¢ divides
|E(F,)|. Let ¢, be the Frobenius endomorphism acting on E[¢]. The corresponding discrete
logarithm in E(FFy)[{] can be reduced to the discrete logarithm in F7, [(] by the use of the Tate~
Lichtenbaum pairing if and only if the characteristic polynomial of the endomorphism qS’; on F is
congruent to 72 — 27" + 1 modulo /.

Avoiding elliptic curves with small % is easy. For randomly chosen elliptic curves E' we can expect
that £ will be large.

But there is an important class of special elliptic curves for which k is always small: the super-
singular elliptic curves. The crucial facts that we use are that the characteristic p of F, divides the
trace of the Frobenius acting on supersingular elliptic curves E and that their absolute invariant jz
lies either in I, orin F)» [LAN 1973].
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Let us discuss the easiest case in detail. We assume that p > 3 and jg € IF,,. Let Ey be an elliptic
curve defined over IF,, with invariant j . Let T2 — aT + p be the characteristic polynomial of ¢, on
FEy. We know that a = \p with A € Z. The estimate

1—-Ap+p/ <2yp+(p+1) with A€ Z
implies that A = 0, hence the eigenvalues A1, A2 of ¢, acting on Fjy satisfy
)\1 = —>\2 and )\1)\2 =D

hence \; = & /—p.
Assume now that ¢ = p®. Since F becomes isomorphic to E over IF4> the characteristic poly-
nomial of the Frobenius endomorphism on E over I is equal to

T? — (A 4 A2%) 4 2 =12 — 2234 4 \3d = (T — \29)2,

Since by assumption F(F,) has elements of order ¢, we obtain that £ divides (1 — \3%).

Since A2 = —\; Ay = —p it follows that £ divides 1 — (—p)<. But this implies that k = 1 if d is
even, and k = 2 if d is odd.

The other cases can be treated by similar considerations. As a result we obtain

Proposition 6.20 Let E be a supersingular elliptic curve over F, with ¢ = p?. Assume that E has
a I ,-rational point of order £. Let k be the smallest natural number such that ¢ | ¢* — 1. Then

« in characteristic 2 we have k < 4,
« in characteristic 3 we have k < 6,
« over prime fields IF,, with p > 5 we have k& < 2,

and these bounds are attained.
In general we have

Theorem 6.21 There is an integer k(g) such that for all finite fields F,, and for all supersingular
abelian varieties of dimension g over F, we have k < k(g).

The number k(g) can be found in [GAL 2001a] and in Section 24.2.2.
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Weil descent — or, as it is alternatively called — scalar restriction, is a well-known technique in
algebraic geometry. It is applicable to all geometric objects like curves, differentials, and Picard
groups, if we work over a separable field L of degree d of a ground field K.

It relates ¢-dimensional objects over L to td-dimensional objects over K. As guideline the reader
should use the theory of algebraic curves over C, which become surfaces over R. This example,
detailed in Section 5.1.2, already shows that the structure of the objects after scalar restriction can
be much richer: the surfaces we get from algebraic curves carry the structure of a Riemann surface
and so methods from topology and Kéhler manifolds can be applied to questions about curves over
C.

This was the reason to suggest that Weil descent should be studied with respect to (constructive
and destructive) applications for DL systems [FRE 1998]. We shall come to such applications in
Sections 15.3 and 22.3.

In the next two sections we give a short sketch of the mathematical properties of Weil descent.
The purpose is to provide a mathematical basis for the descent and show how to construct it. For
a thorough discussion in the frame of algebraic geometry and using the language of schemes, we
refer to [DIE 2001].

7.1 Affine Weil descent
We begin with the easiest case. Let V' be an affine variety in the affine space A} over L defined by
m equations

Fi(z1,...,2,)=0;i=1,...,m

125
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with F;(z) € L]xy, ..., z,)].
We want to find an affine variety W,/ (V') defined over K with the following properties:

(W1) For any field K’ C K for which the degree of L - K’ over K’ is equal to d (i.e., K’
is linearly disjoint from L over K') we have a natural identification of W, /i (V)(K")
with V(L - K).

(W2) The variety W, /i (V') obtained from Wy, i (V') by base extension from K to L is
isomorphic to V¢, the d-fold Cartesian product of V with itself.

To achieve this we choose a basis {u1,...,uq} of L as K-vector space. Then we define the nd
variables y; ; by
Ti = UY1,; + o+ UgYa,i, fori=1,...,n.
We replace the variables z; in the relations defining V' by these expressions.
Next we write the coefficients of the resulting relations as K -linear combinations of the basis

{u1,...,uq} and order these relations according to this basis. As result we get m equations of the
form

Gi(y) = gia(y)ur + -+ gia(y)ug = 0

with g; ; € K[y1.1,.-.,Yn.a]. Because of the linear independence of the elements u; and because
of condition W1 we see that we have to define W as the Zariski closed subset in A”¢ given by the
md equations

9i,j(y) = 0.

Proposition 7.1 Let VV and IV be as above. Then W is an affine variety defined over K satisfying
the conditions W1 and W2. So W is the Weil descent Wy, /i (V) of V.

Example 7.2 Let V' be equal to the affine space of dimension n over L with coordinate functions

TlyeeeyLp.
Then Wy, i (V) = A™ with coordinate functions y; ; defined by

Ti = Y1, + 0+ UdYd,i-

As a special case, take L = C and K = R, n = 1, and take as complex coordinate function the
variable z and as basis of C/R, the elements 1, ¢ with 2 =—1.
As usual we choose real variables z, y satisfying the identity

z =+ 1y.

A polynomial or more generally a rational function G(z) in z gives rise to a function in Gg(x,y)
that we can interpret as a function from R? to C. We separate its real and imaginary part and get

G(2) = g1(z,y) +ig2(z,y).

Example 7.3 Assume that L = K () with {1, a, o} abasis of L/K and a3 = b € K and assume
that char(K) # 3.
Take the affine part of the elliptic curve given by the equation

Ea:x%—xg—lzo.
Replace z; by y1,; + aya,; + a2y37¢ to get the equation

(y1,1+ ayz1 + a2y3,1)2 — (y1,2 + a2 + a2y3,2)3 —-1=0.
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This yields the following system of equations

Yii 4 2by21ys1 — Y3 — by5 o — bys 5 — Bbyioyaoys2 —1 = 0
byi 5+ 21,1921 — 3YLoY22 — 3bysoys 2 — 3byi2y3. = O
yiz +2y11Y3,1 — 33/%23/3,2 - 33/1,22;3,2 - 3by2,2y§,2 =
which defines the Weil descent W, /i (E,) of Ej,.
Remark 7.4 The example is interesting since it is an open affine part of an abelian variety of di-

mension 3 defined over K, whose rational points are in a natural way equal to the L-rational points
of the elliptic curve E.

7.2 The projective Weil descent

Having defined the Weil descent for affine varieties we proceed in the usual way to define it for
projective varieties V' defined over L, which are embedded in some projective space P7}.

We cover V' by affine subvarieties V; and apply the restriction of scalars to the V; to get a col-
lection of affine varieties Wy, /i (Vi) =: W; over K. The varieties V; are intersecting in Zariski
open parts of V' and there are rational maps from V; to V; induced by the rational maps between the
different embeddings of the affine space A} into P} (cf. Example 4.44). By using the functoriality
properties of the Weil descent (or by a direct computation in the respective coordinates as in the
examples) one concludes that the affine varieties W; can be glued together in a projective space
(which is the Weil descent of P}). If we take the coverings fine enough we get as a result of the
gluing process a projective variety W /i (V).

Warning. Not every cover of V' by affine subvarieties V; has the property that the varieties
Wi,k (Vi) cover Wi, i (V'). For instance let £ be a plane projective elliptic curve given by the
equation

E:Y*Z =X+ asXZ%+ agZ°.

Then E is covered by the affine curves F; and E» one gets by intersecting P2 with the open parts
for which Z # 0 (respectively Y # 0) holds. But we also need Es5, which is the intersection of
E with the open part of P? defined by X # 0 to get W, /i (E) by the gluing procedure described
above.

There is another complication if we want to describe the projective variety W,k (V') explicitly
as a subvariety of the projective space PV: the dimension of this space can become rather large.
Here is an estimate for this dimension:

Lemma 7.5 LetV bea projedctive variety embedded into P. Then W, /i (V') can be embedded (in
a canonical way) into P(»+1)"—1,

This lemma follows from the construction via affine covers and the application of the Segre map
(cf. Examples 4.13 and 4.25) of products of projective spaces into a projective space.
We can summarize our results and get the following theorem:

Theorem 7.6 Let /K be a finite separable field extension of degree d. Let V' be an affine or
a projective variety defined over L. The Weil restriction W /i (V') satisfies the properties W1
and W2. If V is affine (respectively projective) and has dimension ¢ then W, /i (V) is an affine
(respectively projective) variety defined over K of dimension td.

Again by functoriality properties one can conclude that the Weil restriction of an algebraic group is
again an algebraic group. Hence we get:
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Corollary 7.7 The Weil restriction of an abelian variety A over L is an abelian variety W,/ (A)
over K.

Let A; be a Zariski-open nonempty affine subvariety of A. Then W, /i (A;) is an affine Zariski-
open nonempty subvariety of W, (A) and hence it is birationally equivalent to W, /i (A).

This corollary justifies Remark 7.4.

7.3 Descent by Galois theory

In the last sections we have introduced an explicit method to construct the Weil descent of varieties
by using affine coordinates. The advantage of this approach is the explicit definition of the Weil
descent by equations. The disadvantage is that the number of variables and the number of relations
grow and so the description becomes very complicated. This is especially striking if we want to
apply the descent to projective varieties or if the degree of L/K is not small. For many purposes
it is enough to have the Weil descent and its properties as background. Then we apply it using
definitions by Galois theory as this is much more elegant.

This approach becomes most natural if we assume that L/ K is a Galois extension with relative
Galois group G(L/K) = G. Note that for us the most important case is that K and L are finite
fields and then this assumption is always satisfied.

Let V be a variety defined over L and let 0 € GG be an automorphism of L fixing K.

We want to define the image of V' under . We assume that V' is affine. If V' is projective one can
proceed in a completely analogous way.

We choose affine coordinate functions = (x1,...,x,) of A7 and define the points on V' as
the set of zeroes of the equations defining V' as usual. Let I be the prime ideal generated by these
equations in L[x]. We apply o to the coefficients of rational functions F' in L(z) and denote by o - F
the image.

The ideal I, := o - I is again a prime ideal in L[z] and so it defines an affine variety V7 over L.
Let us extend o to an automorphism & of K. By definition we get 5 - I = o - I and so V7 = V7
does not depend on the choice of the extension. Let P be a pointin V(K ). Then &(P) is a point in
V7(K) and conversely. So Vo (K) = 5 - V(K).

For all points Q € V7 (K) and f € L(V) we get the identity

(0-NQ)=5(f(61(Q)).

In particular, it follows that we can interpret o - f as rational function on V7.

We apply this to the functions z;. To clarify what we mean, we denote by z; , the function on
V7 induced by the coordinate function z;, i.e., z; - is the image of x; in L[z]/(co - I). We get: let
P be a point in V' and let 2;(P) be the value of the i-th coordinate function on V" applied to P. Let
Z; - be the i-th coordinate function on V7. Then z; , = o - z; and the value of x; , applied to a(P)
is equal to 5 (z;(P)).

All these considerations are near to tautological statements but they allow us to define an action
of the absolute Galois group Gx of K on the variety

W .= H Ve.

ceG

Indeed let P := (..., P,,...)seq, With P, € V°(K), be a point in W (K). Let 7 be an element
of G'x whose restriction to L is equal to 7. Then

F(P) = (..., Qo . Jocc With Qp = 7(Pr—10y).
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Theorem 7.8 The variety W is equal to the Weil restriction W, /¢ (V).

Proof. To prove this theorem we check the properties characterizing the Weil descent.

First W is a variety defined over L. As we have seen its set of points is invariant under the action
of Gx. So W is a variety defined over K.

A point P € W is K-rational if and only if it is L-rational and for all 7 € G we have

T(P.,——loa-) = Pg.

Taking 7 = o~! this means that P, = 0~ !Pq for all 0 € G with P € V(L). It follows that
W(K) =V(L).

Next we extend the ground field K to L and look at W,. On the Galois theoretic side this means
that we restrict the Galois action of Gk on W to an action of GG1. But this group leaves each V7
invariant and so W7y, is isomorphic to HU ca V=V, O

We shall be interested in the special case that K = F, and L = Fa.

Corollary 7.9 Let V' be a (projective or affine) variety defined over F 4 of dimension ¢. For i =
0,...,d—1letV; be the image of V' with respect to ¢, (cf. Proposition 5.67).
Then

d—1
w() =[]V
=0

is a variety defined over IF; of dimension ¢d which is K -isomorphic to Wg , /¢, (V).

If V' is affine (respectively projective) then W (V) is an affine (respectively projective) variety
defined over K.

If V' is an abelian variety over F,« then W (V) is an abelian variety over [F,.

The action of ¢ on W (V') is given as follows: Let P = (..., P;,...) be a point in W (V)(K).
Then ¢Q(P) = ( ER] Qi; s ) with Q? = ¢(1(P)(i71 mod d)-

Remark 7.10 In general the Weil restriction of a Jacobian variety is not a Jacobian variety.

7.4 Zariski closed subsets inside of the Weil descent

As mentioned already, one main application of the Weil descent method is that in W7, i there are
Zariski closed subsets which cannot be defined in V.
In the following we shall describe strategies to find such subsets.

7.4.1 Hyperplane sections

To simplify the discussion we assume that V' is affine with coordinate functions x1, ..., z, and we
take the description of W/, (V') given in Proposition 7.1. There we have introduced nd coordi-
nates functions y; ; for W, (V) by

Ti = UY14 + - A+ UgYai, fori=1,....n,

where {u1,...,uq}isabasisof L/K. Take J C {1,...,d} x {1,...,n} and adjoin the equations
yi,; = 0 for (i, j) € J to the equations defining W, /i (V).

The resulting Zariski closed set inside of W,/ (V') is denoted by W;. It is the intersection of
the Weil restriction of V' with the affine hyperplanes defined by y; ; = 0; (4, 7) € J.

“In general” we can expect that TV is again a variety over K of dimension td — |J|.
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Example 7.11 Let F be an elliptic curve defined over L given by a Weierstrall equation
E:a?+ajzixo + azzy = f(x2),

where f is monic of degree 3. Take 1 <m < d—land J = {1,...,m} x {2}.
Then W;(K) consists of all points in E(L) whose za-coordinate is a K -linear combination of
the elements w1, ..., Uy,.

Remark 7.12 This example is the mathematical background of a subexponential attack to the dis-
crete logarithm in elliptic curves over nonprime fields found recently by Gaudry and Diem (cf.
Section 22.3.5).

7.4.2 Trace zero varieties

We assume for simplicity that L = [F ¢ and K = ¥, and we use the Galois theoretic description of
the Weil descent.

Let V be a variety defined over K. So we get V% = V. Note that nevertheless Wy Ja/Fa (V)
is not F,-isomorphic to V¢ because of the twisted Galois operation. But we can embed V' into
Wr . /F, (V') as diagonal:

Map the point P € V(K) to the point (. . . ¢L(P),...) € ]_L o V. By this map we can identify
V' with a subvariety of Wr_, /r, (V).

Now assume in addition that V = A is an abelian variety. Then we find a complementary abelian
subvariety to A inside of Wy Ja/Fa (A).

We use the existence of an automorphlsm m of order d of Wy Ja/Faq (A) defined by

P:(,PZ,)’—)W(P):(,Q“) with Ql— i—1 mod d-

The map 7 is obviously an automorphism over [F 4. To prove that 7 is defined over I, we have to
show that 7 commutes with the action of ¢,. But

7"-(¢(1(13)) = ( ) in - ) with Q; - ¢q(Qi—2 mod d)

and this is equal to ¢4 (7(P)).

Denote by A the kernel of the endomorphism Z?;()l i, Itis an abelian subvariety of A and it is
called the trace zero subvariety of A. Note that the intersection set of A — embedded as diagonal
into Wr , /r, (A) — with A consists of the points of .A of order dividing d, and the IF,-rational
points ofq.Ao are the points P in A(F,q) with Tr(¢,)(P) = 0.

To see that 4 and 4, generate Wy Ja/Fa (A) we use that A is the kernel of 7 — Id and that Ay
contains (7 — Id) (W]F /7, (A)).

We summarize:

Proposition 7.13 Let .4 be an abelian variety defined over F,. We use the product representation
of Wrg 4d/Fa (A) and define 7 as automorphism induced by a cyclic permutation of the factors. Then
we have the following results:

1. A can be embedded (as diagonal) into Wy Ja/Fa (A). Its image under this embedding is
the kernel of 7 — Id.

2. The image of m — Id is the trace zero subvariety Ay.

The IF,-rational points of .4 are the images of points P € A(F ;) with Tr(7)(P) = 0.

4. Inside of Wy , /r, (A) the subvarieties A and Ay intersect in the group of points of A of
order d1v1d1ng d.

(O8]
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For an example with A = F an elliptic curve and d = 3 we refer to [FRE 2001]; for A = J¢ being
the Jacobian of a hyperelliptic curve C, see [LAN 2004c]. We further investigate these constructive
applications of Weil descent in Section 15.3.

7.4.3 Covers of curves

Let C be a curve defined over IF .« with Jacobian variety .Jo. We want to apply Weil descent to get
information about Picg: from We ,/F, (Jo)(Fy).

Here we investigate the idea of looking for curves C’ defined over F, that are embedded into
We /¥, (Jc) Then the Jacobian of C’ has W Ja/Fa (Jc) as a factor and we can use information
about PICC/ to study PICC Of course this is only a promising approach if the genus of C” is not too
large.

One can try to construct C” directly, for instance, by using hyperplane sections. But it is very
improbable that this will work if we are not in very special situations. Hence, it is not clear whether
this variant can be used in practice. But this approach leads to interesting mathematical questions:

« Which abelian varieties have curves of small genus as sub-schemes?
« Which curves can be embedded into Jacobian varieties of modular curves?

« Which curves have the scalar restriction of an abelian variety (e.g., an elliptic curve) as
Jacobian?

In [BODI™ 2004] one finds families of curves for which the last question is answered positively.

7.4.4 The GHS approach

In practice another approach is surprisingly successful. A priori it has nothing to do with Weil
descent, but as a background and in order to prove results the Weil descent method is useful.

Let L be a Galois extension of the field K. In our applications we shall take L = F 4 and
K = TF,. Assume that C' is a projective irreducible nonsingular curve defined over L, and D is a
projective irreducible nonsingular curve defined over K.

Let

w:Dp —C

be a nonconstant morphism defined over L. As usual we denote by ¢* the induced map from Pic%
to PicoDL. It corresponds to the conorm map of divisors in the function fields ¢* (L(C)) C L(Dy).
Next we use the inclusion K (D) C L(Dp) to define a correspondence map on divisor classes

Y : Pic’(C) — Pic’(D)

given by
Y= Np K op”,
where N,/ is the norm of L /K.

Assume that we are interested in a subgroup G (for instance, of large prime order ¢) in Pic%
and assume that we can prove that G (ker(¢)) = {0}. Then we have transferred the study of G
as subgroup of a Jacobian variety over L to the study of a subgroup of a Jacobian variety over K
which may be easier.

The relation with the Weil descent method is that by the Weil descent of the cover map ¢ we
get an embedding of D into Wp, /i (Jc). This method is the background of the so-called GHS
algorithm. We shall come to this in more detail in 22.3.2.
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The mathematically interesting aspect of this method is that it relates the study of Picard groups
of curves to the highly interesting theory of fundamental groups of curves over non-algebraically
closed ground fields.
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8.1 General principle

Let p be a prime and IF; a finite field with ¢ = p elements. Consider a projective nonsingular curve
C' defined over Iy, e.g., an elliptic or hyperelliptic curve. Let F x be a finite extension of F, of
degree k, then a point on C'is called F ;«-rational if a representative of its homogeneous coordinates
is defined over Fx. Let P be a point in C(IF,) and denote with ¢, the Frobenius morphism, then
¢q(P) = P if and only if P is F;-rational. More generally, the number of IF x-rational points on
C' is the number of fixed points of qbf;. A first natural question to ask is thus: how to efficiently
compute |C(FF )| for any positive .

As described in Section 4.4.4, we can embed C' in a projective group variety over I, called the
Jacobian variety of C' and denoted by Jc. The Frobenius morphism ¢, then induces an isogeny of
Je, also denoted by ¢, and clearly Jo(F,) = ker(¢, — [1]). A second natural question to ask is
thus: how to efficiently compute |.Jc (IF )| for any positive .

This chapter shows that the above questions are in fact closely related, and introduces different
approaches to solving both of them. The general strategy is based on ideas introduced by Weil,
Serre, Grothendieck, Dwork, etc. in order to prove the Weil conjectures (see Section 8.1.1). The
main idea is the following: the number of I x-rational points on C' or J¢ is the number of fixed
points of qb’;. In the complex setting, there exists a general formula due to Lefschetz for the number
of fixed points of an analytic map.

133
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Theorem 8.1 (Lefschetz Fixed Point Theorem) Let M be a compact complex analytic manifold
and f : M — M an analytic map. Assume that f only has isolated nondegenerate fixed points;
then

{PeM|f(P)= P} = (1) Te(f"s Hhr(M)).
The H (M) in the above theorem are the de Rham cohomology groups of M and are finite
dimensional vector spaces over C on which f induces a linear map f*. The number of fixed points
of f is thus the alternating sum of the traces of the linear map f* on the vector spaces H ,(M).

The dream of Weil was to mimic this situation for varieties over finite fields, i.e., construct a good
cohomology theory (necessarily over a characteristic zero field) such that the number of fixed points
of the Frobenius morphism is given by a Lefschetz fixed point formula.

The different approaches described in this chapter all fit in the following slightly more general
framework: construct vector spaces over some characteristic zero field together with an action of
the Frobenius morphism ¢, that provides information about the number of fixed points of ¢, and
thus the number of F,-rational points on C' or Jc.

8.1.1 Zeta function and the Weil conjectures

Let F, be a finite field with ¢ = p? and p prime. For any algebraic variety X defined over F,, let
Ny, denote the number of [« -rational points on X.

Definition 8.2 The zeta function Z (X /F,; T') of X over IF, is the generating function

&
k=1

Z(X/Fq;T) = exp ( o~ N Tk> .

The zeta function should be interpreted as a formal power series with coefficients in Q. In 1949,
Weil [WEI 1949] stated the following conjectures, all of which have now been proven.

Theorem 8.3 (Weil Conjectures) Let X be a smooth projective variety of dimension n defined
over a finite field with g elements.

1. Rationality: Z(X/F,;T) € Q[[T7] is a rational function.

2. Functional equation: Z(T') = Z(X/F,; T') satisfies

1
Z(—) = +¢"E2TE Z(T),
T

with E equal to the Euler—Poincaré characteristic of X, i.e., the intersection number of
the diagonal with itself in the product X x X.

3. Riemann hypothesis: there exist polynomials P;(T") € Z[T| fori = 0,. .., 2n, such that

o PUT) - Py (T)
ZX/EGT) = —p oy Py 1)

with Py(T) =1—-T, P, (T) =1—¢"T andfor1 <r<2n-—1

Br.

P(T) =] = ariT)

i=1

where the «,. ; are algebraic integers of absolute value q2.
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Weil [WEI 1948] proved these conjectures for curves and abelian varieties. The rationality of the
zeta function of any algebraic variety was settled in 1960 by Dwork [DWO 1960] using p-adic
methods. Soon after, the Grothendieck school developed ¢-adic cohomology and gave another proof
of the rationality and the functional equation. Finally, in 1973, Deligne [DEL 1974] proved the
Riemann hypothesis.

Let ¢, be the Frobenius endomorphism of J¢, then the elements fixed by ¢, are exactly Jo (IF,)
or ker(¢, — [1]) = Jo(Fy). As introduced in Section 5.2.2, we can associate to ¢, its characteristic
polynomial x(¢4)c, which is a monic polynomial of degree 2¢ with coefficients in Z. Furthermore,
by Corollary 5.70 we have that | Jo (F,)| = x(¢q)c(1).

The relation between x (¢4 )¢ and the zeta function of the smooth projective curve C'is as follows:

Proposition 8.4 Let C' be a smooth projective curve of genus g and let x(¢4)c(T") € Z[T] be the
characteristic polynomial of ¢,. Define the L-polynomial of C' by

1
L) = T3(6.)e 1)
then the zeta function of C' is given by

L(T)

S T

Let L(T)=ao+ a1 T+ -+ aggTQQ then the functional equation shows that azy_; = ¢~ iq; for
i=0,...,g. If we write L( )= H 1(I = a;T'), then the Riemann hypothesis implies |o;| = /g
and again by the functional equation, we can label the «; such that o;a;4 4y = g fori = 0,...,g.
This shows that Theorem 5.76 immediately follows from the Weil conjectures.

Taking the logarithm of both expressions for the zeta function leads to

e} 29
I Z(C/Fy;T) = %T’“ => (1l —a;T)=In(1=T) = In(1 — qT).
i=1

k=1

Since In(1 — sT') Z » we conclude that for all positive k
i=1

k

29
Np=q¢"+1-) ok
i=1

The zeta function Z(C/F; T) of a curve C contains important geometric information about C' and
its Jacobian J¢. For example, Stichtenoth [STI 1979] proved the following theorem.

Theorem 8.5 Let L(T) =ag + -+ + aggng, then the p-rank of J¢ is equal to
max{i|a; #0 (mod p)}

Furthermore, Stichtenoth and Xing [STXI 1995] showed that J¢ is supersingular, i.e., isogenous
over [, to a product of supersingular elliptic curves, if and only if pldk/2] | ap foralll <k < g.

8.1.2 Cohomology and Lefschetz fixed point formula

In this section we indicate how the Weil conjectures, except for the Riemann hypothesis, almost im-
mediately follow from a good cohomology theory. Let X be a projective, smooth algebraic variety
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of dimension n over a finite field F,, of characteristic p and let X ®F, F,, denote the corresponding
variety over the algebraic closure F, of F,,.

Let ¢ denote a prime different from p and let Q; be the field of /-adic numbers. Grothendieck
introduced the ¢-adic cohomology groups H*(X, Q) (see [SGA 4]), which he used to prove the
rationality and functional equation of the zeta function. The description of these cohomology groups
is far beyond the scope of this book and we will simply state their main properties. However, for X,
a smooth projective curve, we have the following theorem.

Theorem 8.6 Let C' be a smooth projective curve over a finite field IF, of characteristic p and let ¢
be a prime different from p; then there exists an isomorphism

Hl(C, Zg) ~ Tg(Jc).

To prove the rationality of the zeta function and the factorization of its numerator and denomina-
tor, we only need the following two properties:

« The ¢-adic cohomology groups H (X, Qy) are finite dimensional vector spaces over Qy
and H(X,Qy) = 0 fori < 0 andi > 2n.

« Let f : X — X be a morphism with isolated fixed points and suppose moreover that
each fixed point has multiplicity 1. Then the number N (f, X) of fixed points of f is
given by a Lefschetz fixed point formula:

2n

N(f,X)=> (-1)'Tr(f H'(X, Q).

=0

Recall that the number IV, of F » -rational points on X equals the number of fixed points of qS’; with
¢4 the Frobenius morphism. By the Lefschetz fixed point formula, we have

2n

N = (1) Tr(¢f™; H(X, Qu)).-

i=0
Substituting this in the definition of the zeta function proves the following theorem.

Theorem 8.7 Let X be a projective, smooth algebraic variety over IF, of dimension n, then

Pi(T)...Po1(T)
Po(T) ... Pon(T)

Z(X[Fq, T) =

with o
PA(T) = det(1 — ¢T; H'(X. Q).

The above theorem constitutes the first cohomological approach to computing the zeta function of a
projective, smooth algebraic variety: construct a basis for the £-adic cohomology groups H*(X, Q)
and compute the characteristic polynomial of the representation of ¢, on H' (X, Q). Unfortunately,
the definition of the H?(X, Q) is very abstract and thus useless from an algorithmic point of view.
For curves not all is lost, since by Theorem 8.6 we have the isomorphism H(C, Z;) ~ Ty(Jc).
The second cohomological approach constructs p-adic cohomology groups defined over the un-
ramified extension Q, of Q,,. Several different theories that satisfy a Lefschetz fixed point formula
exist, e.g., Monsky—Washnitzer cohomology [MOWA 1968, MON 1968, MON 1971], Lubkin’s p-
adic cohomology [LUB 1968], crystalline cohomology by Grothendieck [GRO 1968] and Berth-
elot [BER 1974], and finally, rigid cohomology by Berthelot [BER 1986]. The main algorithmic
advantage over the ¢-adic cohomology theory is the existence of comparison theorems that provide
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an isomorphism with the algebraic de Rham cohomology, i.e., modules of differentials modulo ex-
act differentials. The algebraic de Rham cohomology itself is very computational in nature and
thus more amenable to computations than ¢-adic cohomology. The main disadvantage of the p-adic
approach is that the complexity of the resulting algorithms is exponential in p.

8.2 Overview of ¢-adic methods

Let IF, be a finite field of characteristic p and let C' be a smooth, projective curve defined over [,
of genus g. The Jacobian variety Jo of C' then is an abelian variety over F, of dimension g. Let
X(¢q)c(T) € Z[T] be the characteristic polynomial of the Frobenius endomorphism ¢, acting on
the Tate module Ty (.J¢) for ¢ a prime different from p, then we can write

29
X(¢g)c(T) = agy iT" with ag =1 and ay, = ¢’.
i=0
By the functional equation of the zeta function we have aoy_; = ¢ fa; fori = 0,...,g, so it
suffices to determine the a; for: =0,...,g.

The main idea of the ¢-adic methods is to approximate 7;(Jc) by the ¢-torsion points Je [¢].
Recall that since ¢ # p, the {-torsion is a 2¢ dimensional vector space over Z/¢Z and the restriction
of ¢, to Je|{] is a linear transformation of this vector space. Let P(1') denote the characteristic
polynomial of this restriction, then by Lemma 5.71 we have Py (T') = x(¢4)c(T) (mod ¢).

Furthermore, by the Riemann hypothesis or Corollary 5.82, the coefficients ag, . . . , a4 are bound-

ed by
2 : 2
|az'| < ( :g)qz/Q < ( g)qg/Q.
? g

Using the Chinese remainder theorem, we can therefore uniquely recover x(¢,)c from P;(T') for
primes ¢ < H In g with H a constant such that

H ‘L > 2<2g>q9/2.
g

primes £ < HIng
ged(f,q) =1

The constant H only depends on the genus g and the prime number theorem implies that H is linear
in g.
For a given prime /, the polynomial P, can be computed as follows. Assume that J< is embedded

in PV and that an affine part is defined by a system of polynomial equations F1, ..., Fi € F,[X]
with X = (X1,..., Xx). Furthermore, assume that the addition law is explicitly given by an N-
tuple of rational functions (G1(X,Y),...,Gn(X,Y)) with Y = (Y7,...,Yx). Using the double
and add method, we can compute a set of polynomials Q¥, ..., Qf;g generating the ideal of the
subvariety of /-torsion points of .Jo. Let I; be the radical ideal of (Fy,..., F,,Qf,..., Qi{); to
recover P, we have to find integers 0 < a; < £ fori =0, ..., 2g such that

29 , .

> lagg—i(XT,... . XY) € I,

i=0

where the addition in the above equation is the group law on J¢ and [m] denotes multiplication by
m on Jo. The resulting algorithm has complexity O((lg q)A), where A only depends on g, the
dimension of the embedding space PV, the number and degrees of the defining equations of .J- and
the group law. More details about this approach can be found in [PIL 1990].
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Remark 8.8 Although the above algorithm has a polynomial time complexity in lg g, it is currently
only practical for elliptic curves and hyperelliptic curves of genus 2. The reason for this is that the
degrees of the polynomials QY . . ., Qf;y grow as O((29), since Jo[l] ~ (Z/¢Z)*I. However, for
elliptic curves, the above algorithm can be improved substantially by restricting to a subgroup of
Jc[€], which is the kernel of an isogeny of degree ¢. Further details can be found in Section 17.2.

8.3 Overview of p-adic methods

The best known application of p-adic methods in algebraic geometry is undoubtedly Dwork’s in-
genious proof of the rationality of the zeta function [DWO 1960]. Although Dwork’s proof can be
transformed easily in an algorithm to compute the zeta function of any algebraic variety, nobody
seemed to realize this and for more than a decade only ¢-adic algorithms were used.

At the end of 1999, Satoh [SAT 2000] introduced the p-adic approach into computational alge-
braic geometry by describing a p-adic algorithm to compute the number of points on an ordinary
elliptic curve over a finite field. Following this breakthrough development, many existing p-adic
theories were used as the basis for new algorithms:

« Dwork’s p-adic analytic methods by Lauder and Wan [LAWA 2002b]

« Serre—Tate canonical lift by Satoh [SAT 2000], Mestre [MES 2000b], etc.

« Monsky—Washnitzer cohomology by Kedlaya [KED 2001]

« Dwork—Reich cohomology by Lauder and Wan [LAWA 2002a, LAWA 2004]
« Dwork’s deformation theory by Lauder [LAU 2004].

Finally, we note that the use of p-adic methods as the basis for an algorithm to compute the zeta
function of an elliptic curve already appeared in the work of Kato and Lubkin [KALU 1982].

In this section we will only review the two p-adic theories that are most important for practical
applications, namely the Serre—Tate canonical lift and Monsky—Washnitzer cohomology.

8.3.1 Serre-Tate canonical lift

Let A be an abelian variety defined over F, with ¢ = p® and p a prime. Let Qg be an unramified
extension of Q,, of degree d with valuation ring Z, and residue field Z,/(pZ,) ~ F,. Consider
an arbitrary lift A of A defined over Zg, i.e., A reduces to A modulo p, then in general there will
not exist an endomorphism F € End(.A) that reduces to the ¢g-th power Frobenius endomorphism

¢q € End(A).

Definition 8.9 A canonical lift of an abelian variety A over F, is an abelian variety A over Q,
such that A reduces to A modulo p and the ring homomorphism End(.4) — End(A) induced by
reduction modulo p is an isomorphism.

This definition implies that if A admits a canonical lift A, then there exists a lift # € End(A.)
of the Frobenius endomorphism ¢, € End(A). In fact, the reverse is also true: let A be a lift
of A and assume that 7 € End(A) reduces to ¢, € End(A), then A is a canonical lift of A.
Deuring [DEU 1941] proved that for an ordinary elliptic curve, a canonical lift always exists and
is unique up to isomorphism. The question of existence and uniqueness of the canonical lift for

general abelian varieties was settled by Lubin, Serre and Tate [LUSET 1964].

Theorem 8.10 (Lubin—Serre-Tate) Let A be an ordinary abelian variety over [F,. Then there exists
a canonical lift A, of A over Z; and 4, is unique up to isomorphism.
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Recall that an abelian variety A is ordinary if it has maximal p-rank, i.e., A[p] = (Z/pZ)d™A).

The construction of a p-adic approximation of A, given A proceeds as follows: let Ag be a lift
of A to Z, and denote with 7 : Ay — A reduction modulo p. Consider the subgroup Ay [p]'oc =
Ao[p]N ker( ), i.e., the p-torsion points on Ay that reduce to the neutral element of A. As shown by
Carls [CAR 2003], A1 = Ao/ Ao [p]loC is again an abelian variety such that its reduction is ordinary
and there exists an isogeny Iy : A9 — A1, which reduces to the p-th power Frobenius morphism
o A— A, Repeating this construction we can define A; = A;_1/A;_1[p]'°° for i positive and
we get a sequence of abelian varieties and isogenies

I I 1.
Ao 25 Ay 5 Ay B Ay

Clearly we have that A4 for k € N reduces to A modulo p; furthermore, the sequence {Akq}ren
converges to the canonical lift A, and the convergence is linear.

Let C' be a smooth projective curve defined over I, of genus g, with Jacobian variety Jc. Assum-
ing that J is ordinary, we can consider its canonical lift A.. Note that A, itself does not have to
be the Jacobian variety of a curve [OOTS 1986]. Since End(A.) is isomorphic to End(J¢), there
exists a lift 7 of the Frobenius endomorphism ¢,.

To recover the characteristic polynomial of ¢,, we proceed as follows: let D(A., Q,) denote
the space of holomorphic differential forms of degree 1 on .A. defined over QQ,, then we have
dim(Do (Ae, Qq)) = g, since dim(J¢) = g. Given a basis B of Dg(A., Qq), every endomorphism
A € Endg, (Ac) can be represented by a g x g matrix M defined over Q by considering the action
of A* on B, i.e., \*(B) = M B. The link with the characteristic polynomial of Frobenius x(¢q)c
is then given by the following proposition.

Proposition 8.11 Let 7 € Endg, (A.) be the lift of the Frobenius endomorphism ¢, € Endr, (J¢)
and let M r be the matrix through Wthh ¢y acts on Do(Ae, Qq). If P(T') € Zy(T) is the charac-
teristic polynomial of Mz + ¢M 7", then the characteristic polynomial x(¢4)c is given by

\(@)e(T) = T7P (T + 1) ®.1)
Note that we can also write x(¢q)c(T) = P1(X)P2(X) with P; the characteristic polynomial of
M and P, the characteristic polynomial of g M }_-1

The point-counting algorithms based on the canonical lift thus proceed in two stages: in the first
stage, a sufficiently precise approximation of the canonical lift of J& (or its invariants) is com-
puted and in the second stage, the action of the lifted Frobenius endomorphism F is computed on

QO(Aca Qq)

8.3.2 Monsky—Washnitzer cohomology

In this section we will specialize the formalism of Monsky—Washnitzer cohomology as described in
the seminal papers by Monsky and Washnitzer [MOWA 1968, MON 1968, MON 1971], to smooth
affine plane curves. Further details can be found in the lectures by Monsky [MON 1970] and in the
survey by van der Put [PUT 1986].

Let C be a smooth affine plane curve over a finite field F, with ¢ = p® elements, and let Qq
be a degree d unramified extension of QQ, with valuation ring Z,, such that Z,/pZ, = F,. The
aim of Monsky—Washnitzer cohomology is to express the zeta function of the curve 5 in terms of a
Frobenius operator F acting on p-adic cohomology groups H*(C,Q,) defined over Q, associated
to C. Note that it is necessary to work over a field of characteristic 0; otherwise, it would only be
possible to obtain the zeta function modulo p. For smooth curves, most of these groups are zero as
illustrated in the next proposition.
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Proposition 8.12 Let C be a nonsingular affine curve over a finite field [F,, then the only nonzero
Monsky-Washnitzer cohomology groups are H°(C, Q,) and H'(C, Q,).

In the remainder of this section, we introduce the cohomology groups H°(C,Q,) and H'(C,Q,)
and review their main properties.

Since C is plane, C can be given by a bivariate polynomial equation g(z,y) = 0 with g € F[z,y].
Let A = Fy[z,y]/(g(x, y)) be the coordinate ring of C. Take an arbitrary lift g(z, y) € Zq[z,y] of
g(z,y) and let C be the curve defined by g(,y) = 0 with coordinate ring A = Z,[z,y]/(9(, y)).
To compute the zeta function of C in terms of a Frobenius operator, we need to lift the Frobenius
endomorphism ¢, on Ato the Z4-algebra A, but as illustrated in the previous section, this is almost
never possible. Furthermore, the Z,-algebra A depends essentially on the choices made in the lifting
process as the following example illustrates.

Example 8.13 Consider C : 2y — 1 = 0 over [F,, with coordinate ring A = F[x, 1/}, and consider
the two lifts

gi(zy) =zy—1  go(w,y) = z(1 +pr)y —1
then we have that Ay = Z,[z,1/x] and Ay = Z,[x,1/(x(1 + px))], which are not isomorphic.

A first attempt to remedy both difficulties is to work with the p-adic completion A> of A, which is
unique up to isomorphism and does admit a lift of ¢, to A°°. But then a new problem arises since
the de Rham cohomology of A°°, which provides the vector spaces we are looking for, is too big.

Example 8.14 Consider the affine line over IF,,, then A = Z,[x] and A is the ring of power series

oo

Zrixi with r; € Z, and lim r; = 0.
11— 00

i=0

We would like to define H'(A,Q,) as A dx/d(A>) @z, Qq, but this turns out to be infinite
dimensional. For example, it is clear that each term in the dlfferentlal form Y7 p P 1 is exact
but its sum is not, since y_ ;- 2P is not in A>. The fundamental problem is that S piaP 1
does not converge fast enough for its integral to converge as well.

Monsky and Washnitzer therefore work with a subalgebra At of A, whose elements satisfy growth
conditions.

Definition 8.15 Let A = Z, [z, y]/(g(z, y)). then the dagger ring or weak completion A" is defined
as AT = Z,(z,y)"/(g9(x,y)), where Z,{z, y)T is the ring of overconvergent power series

(S risay € Zlln,ul) |36, € Roe > 0,(1,5) : vplrag) > (i +5) +6}.

The ring AT satisfies AT/(pAT) = ‘A and depends up to Z,-isomorphism only on A. Further-
more, Monsky and Washnitzer show that if % is an F,-endomorphism of A, then there exists a
Z,-endomorphism ¢ of AT lifting . In particular, we can lift the Frobenius endomorphism ¢, on
A to a Zg-endomorphism F on AT,

To each element s € AT we can associate the differential ds such that the usual Leibniz rule
applies: for s,t € AT : d(st) = sdt + tds, which implies that d(a) = 0 for a € Z,. The set of
all these differentials clearly is a module over A' and is denoted by D' (A'). The following lemma
gives a precise description of this module.

Lemma 8.16 The universal module D'(A") of differentials satisfies

DY(A!) = (A dz + A dy)/(AT<% da + gg d ))
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Taking the total differential of the equation g(z,y) = 0 gives % dxr + % dy = 0, which explains

the module Af (% dx + g—fj dy) in the above lemma. The map d : AT — D'(A") is a well defined
derivation, so it makes sense to consider its kernel and cokernel.

Definition 8.17 The cohomology groups H%(A,Q,) and H'(A, Q,) are defined by
H°(A,Qq,) = ker(d) ®z, Q; and H'(A,Q,) = coker(d) ®z, Q. (8.2)

By definition we have H'(A,Q,) = (D'(A")/d(A")) @z, Qq: the elements of d(AT) are called
exact differentials. One can prove that H%(A,Q,) and H' (A, Q,) are well defined, only depend on
A, and are finite dimensional vector spaces over Q.

Proposition 8.18 Let C be a nonsingular affine curve of genus g, then dim (HO (4, (@q)) = 1land
dim (H'(A4,Qq)) = 29 +m — 1, where m is the number of points needed to complete C to a
smooth projective curve.

Let F be a lift of the Frobenius endomorphism ¢, to AT, then F induces an endomorphism JF* on
the cohomology groups. The main theorem of Monsky—Washnitzer cohomology is the following
Lefschetz fixed point formula.

Theorem 8.19 (Lefschetz fixed point formula) Let C/F, be a nonsingular affine curve over F,,
then the number of IF . -rational points on C is equal to

|C(F )| = Tr (¢*F 7 HY(C,Qq)) — Tr (¢"F " H'(C,Qy)) .

Since H°(C,Q,) is a one-dimensional vector space on which F* acts as the identity, we conclude
that Tr (¢"F~**; H(C,Qq)) = ¢". To count the number of F x-rational points on C, it thus suf-
fices to compute the action of F* on H(C, Q).

The algorithms based on Monsky—Washnitzer cohomology thus also proceed in two stages: in the
first stage, a sufficiently precise approximation of the lift  is computed and in the second stage, a
basis of H'(C, Q,) is constructed together with reduction formulas to express any differential form
on this basis. More algorithmic details can be found in Section 17.3.
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Given an element x of a group (G, x) and an integer n € Z one describes in this chapter efficient
methods to perform the exponentiation z™. Only positive exponents are considered since ™ =
(1/2)~™ but nothing more is assumed especially regarding the structure and the properties of G.
See Chapter 11 for specific improvements concerning finite fields. Two elementary operations are
used, namely multiplications and squarings. The distinction is made for performance reasons since
squarings can often be implemented more efficiently; see Chapters 10 and 11 for details. In the
context of elliptic and hyperelliptic curves, the computations are done in an abelian group denoted
additively (G, ®). The equivalent of the exponentiation ™ is the scalar multiplication [n]P. All
the techniques described in this chapter can be adapted in a trivial way, replacing multiplication by
addition and squaring by doubling. See Chapter 13 for additional details concerning elliptic curves
and Chapter 14 for hyperelliptic curves.

Exponentiation is a very important operation in algorithmic number theory. For example, it is
intensively used in many primality testing and factoring algorithms. Therefore efficient methods
have been studied over centuries. In cryptosystems based on the discrete logarithm problem (cf.
Chapter 1) exponentiation is often the most time-consuming part, and thus determines the efficiency
of cryptographic protocols like key exchange, authentication, and signature.

Three typical situations occur. The base point = and the exponent n may both vary from one
computation to another. Generic methods will be used to get " in this case. If the same exponent
is used several times a closer study of n, especially the search of a short addition chain for n, can
lead to substantial improvements. Finally, if different powers of the same element are needed, some
precomputations, whose cost can be neglected, give a noticeable speedup.

145
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Most of the algorithms described in the remainder of this chapter can be found in [MEOO™ 1996,
GOR 1998, KNU 1997, STA 2003, BER 2002].

9.1 Generic methods

In this section both x and n may vary. Computing =™ naively requires n — 1 multiplications, but
much better methods exist, some of them being very simple.

9.1.1 Binary methods

Itis clear that 22" can be obtained with only k squarings, namely 22, 2#, 28, .. ., 22" Building upon

this observation, the following method, known for more than 2000 years, allows us to compute ="
in O(lg n) operations, whatever the value of n .

Algorithm 9.1 Square and multiply method

INPUT: An element x of G and a nonnegative integer n = (n¢—1 . ..n0)2.
OUTPUT: The element 2" € G.

1. y«landi«—/¢—1

2. while : >0

3. y —y’

4. if n; =1 then y — 2 Xy
5. 1—1i—1

6. return y

This method is based on the equality

x(ngfl... Tl,i+171,i)2 — (x(ngfl... 7L7;+1)2)2 « xni .
As the bits are processed from the most to the least significant one, Algorithm 9.1 is also referred to

as the left-to-right binary method.
There is another method relying on

x(n,;n,;_l...ng)Q — x’n,i?i X x(ni_l...no)g

which operates from the right to the left.

Algorithm 9.2 Right-to-left binary exponentiation

INPUT: An element x of G and a nonnegative integer n = (n¢—1 . ..n0)2.
OUTPUT: The element 2" € G.

1. y«—1l,z«—xandi 0
2. while i< /-1 do

3. if n,=1 then y —y X 2z
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4. Z<—Z2

5. t—1+1

6. return y

Remarks 9.3

(i) Algorithm 9.1 is related to Horner’s rule, more precisely computing x™ is similar to
evaluating the polynomial Zf:é n; X* at X = 2 with Horner’s rule.

(i) Further enhancements may apply to the products y X x in Algorithm 9.1 since one of
the operands is fixed during the whole computation. For example, if x is well chosen the
multiplication can be computed more efficiently. Such an improvement is impossible
with Algorithm 9.2 where different terms of approximately the same size are involved
in the products y X z.

(iii) In Algorithm 9.2, whatever the value of n, the extra variable z contains the successive

squares 2, x*, ... which can be evaluated in parallel to the multiplication.

The next example provides a comparison of Algorithms 9.1 and 9.2.

Example 9.4 Let us compute 314, One has 314 = (100111010)3 and £ = 9.

| Algorithm 9.1 |

) 8 7 6 5 4 3 2 1 0
n; 1 0 0 1 1 1 0 1 0
I LR L g 1Y
Algorithm 9.2 |
i 0 1 2 3 4 5 6 7 8
n; 0 1 0 1 1 1 0 0 1
| a a2 gt S gl6 32 64 128 256
y 1 22 a2 g0 26 58 58 58 314

The number of squarings is the same for both algorithms and equal to the bit length ¢ ~ 1gn of n.
In fact this will be the case for all the methods discussed throughout the chapter.

The number of required multiplications directly depends on v(n) the Hamming weight of n, i.e.,
the number of nonzero terms in the binary expansion of n. On average % lg n multiplications are
needed.

Further improvements introduced below tend to decrease the number of multiplications, leading
to a considerable speedup. Many algorithms also require some precomputations to be done. In
the case where several exponentiations with the same base have to be performed in a single run,
these precomputations need to be done only once per session, and if the base is fixed in a given
system, they can even be stored, so that their cost might become almost negligible. This is the case
considered in Algorithms 9.7, 9.10, and 9.23. Depending on the bit processed, a single squaring
or a multiplication and a squaring are performed at each step in both Algorithms 9.1 and 9.2. This
implies that it can be possible to retrieve each bit and thus the value of the exponent from an anal-
ysis of the computation. This has serious consequences when the exponent is some secret key. See
Chapters 28 and 29 for a description of side-channel attacks. An elegant technique, called Mont-
gomery’s ladder, overcomes this issue. Indeed, this variant of Algorithm 9.1 performs a squaring
and a multiplication at each step to compute z".
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Algorithm 9.5 Montgomery’s ladder

INPUT: An element z € G and a positive integer n = (ng—1...no)2.
OUTPUT: The element 2™ € G.

1. a:1<—a:andx2<—a:2

2. for i=/—2 downto O do

3. if n; =0 then

4. .%‘1<—J)§ and 2 «— x1 X T2
5. else

6. 1 <— X1 X T2 anda:2<—x§

7. return z1

Example 9.6 To illustrate the method, let us compute 23'* using, this time, Algorithm 9.5. Starting
from (21, x2) = (z,2?), the next values of (21, x2) are given below.

1 7 6 5 4 3 2 1 0
n; 0 0 1 1 1 0 1 0

(wh 1‘2) (l‘2, 1‘3) (l‘4, 1‘5) (xQ’ 1‘10) (1}19,{1]20) (]JSQ, 1‘40) (1}78, 1‘79) ($157,{I]158) ($314,{I]315)

See also Chapter 13, for a description of Montgomery’s ladder in the context of scalar multiplication
on an elliptic curve.

9.1.2 Left-to-right 2*-ary algorithm
The general idea of this method, introduced by Brauer [BRA 1939], is to write the exponent on a
larger base b = 2¥. Some precomputations are needed but several bits can be processed at a time.

In the following the function o is defined by ¢(0) = (k,0) and o(m) = (s,u) where m = 2°u
with u odd.

Algorithm 9.7 Left-to-right 2*-ary exponentiation

INPUT: An element z of G, a parameterkk > 1, anonnegative integer n = (n¢—1 ...no)qr and
the precomputed values xs, x5, e ,m2 -1
OUTPUT: The element 2™ € G.

1. y<—landi—£{¢—1

2. (s,u) «— o(n;) [ni = 2°u]
3. while ¢ > 0 do

4. for j=1 to k—s do y — y°

5 ye—yxaz*

6. for j=1 to s do y — ¢°
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7. t—1—1

8. return y

Remarks 9.8
(i) Lines 4 to 6 compute kaa:”’? i.e., the exact analogue of y?z™ in Algorithm 9.1. To
reduce the amount of precomputations, note that (y2* "z%)2" = y2“2™ is actually
computed.

(i) The number of elementary operations performed is Ign + lgn(1 + o(1)) lgn/lglgn.
(iii) For optimal efficiency, k should be equal to the smallest integer satisfying

k(k + 1)22
BN S o 2

See [COH 2000] for details. This leads to the following table, which gives for all inter-
vals of bit lengths the appropriate value for k.

| k B 2 3 4 5 6 7 |
| No.of binary digits | [1,9] [10,25] [26,70] [70,197] [197,539] [539,1434] [1434,3715] |

Example 9.9 Take n = 11957708941720303968251 whose binary representation is
(10100010000011101010001100000111111101011001011110111000000001111111111011)s.
As its binary length is 74, take k = 4. The representation of n in radix 2% is

310 8 1211513 6 5 14 14 011515 11)4.
2x5

(2 8 8
2x1 8x1 8x1 8x1 4x3 2Xx3 2XT 2X7

Thus the successive values of y are 1, z, 22, x*, 27, 210, 220, 40 80 281 2162 2324 27 Let

us denote a multiplication by M and a squaring by S. Then the precomputations cost TM + S and

additionally one needs 17M + 7285, i.e., 97 elementary operations in total. By way of comparison,

Algorithm 9.1 needs 112 operations, 39M + 73S.

9.1.3 Sliding window method

The 2*-ary method consists of slicing the binary representation of n into pieces using a window of
length k and to process the parts one by one. Letting the window slide allows us to skip strings of
consecutive zeroes. For instance, let n = 334 = (101001110),. Take a window of length 3 or, in
other words, precompute 23, z° and 7 only. The successive values of iy computed by Algorithm 9.7

are 1,2, 210, 220 240 41 482 2164 2167 and 2334 as reflected by
334 = (101001 110),.
5 1 2x3

But one could compute 1, 2%, 10, 220, 240, 280 2160 167 4334 jnstead. This saves one multipli-

cation and amounts to allowing non-adjacent windows

334 = (101001110),

5 7

where the strings of many consecutive zeroes are ignored.
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Here is the general algorithm.

Algorithm 9.10 Sliding window exponentiation

INPUT: An element z of G a nonnegatlve |nteger n = (ng—1...m0)2, a parameter k > 1 and

the precomputed values x> x5 ST

OUTPUT: The element 2" € G.

1. y<—landi—/{¢—1
2. while i > 0 do

3 if n; =0 then y — y?andi «—i—1

4. else

5 s «— max{i — k+ 1,0}

6. while n, =0 do s« s+1

7. for h=1 toi—s+1doy«—y°

8. w— (ni...ng)2 [ni=ns=1andi—s+ 1< k]
9. y—yxz" [u is odd so that z* is precomputed]
10. 1—s—1

11. return y

Remarks 9.11

(i) In Line 6 the index i is fixed, n; = 1 and the while loop finds the longest substring
(n;...ns) of length less than or equal to k such that ng = 1. Sou = (n; ...ns)2 is odd
and belongs to the set of precomputed values.

(i) Only the values 2 occurring in Line 9 actually need to be precomputed and not all the

« k
values 23, 2%, ... 2% ~L.

(iii) In certain cases it is possible to skip some squarings at the beginning, at the cost of an ad-
ditional multiplication. For the sake of clarity assume that £ = 5 and that the binary ex-
pansion of 7 is (1000000)s. Then Algorithm 9.10 computes z, 22, 24, 28, 216, 232 264,
But one could perform z3! x x instead to obtain x32 directly, taklng advantage of the

precomputations. However, this trick is interesting only if the first value of u is less than
2k-1,

Example 9.12 With n = 11957708941720303968251 and k = 4 the sliding window method
makes use of the following decomposition

(101000100000111010100011000001111 11101011001011 1101 110000000011 111 1101
15 13

N,

)2.
The successive values of y are 1, z°, xlo, 20, 40, 280, x81, 162, x324, 2648 . 2™ In this case

93 operations are needed, namely 21M + 72S, precomputations included.

9.1.4 Signed-digit recoding

When inversion in G is fast (or when z is fixed and ! precomputed) it can be very efficient to
multiply by either z or z=!. This can be used to save additional multiplications on the cost of
allowing negative coefficients and hence using the inverse of precomputed values. The extreme
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example is the computation of xzk_l. With the binary method, cf. Algorithm 9.1, one needs k — 1
squarings and k& — 1 multiplications. But one could also perform k squarings to get 22" followed by
a multiplication by 2 1. This remark leads to the following concept.

Definition 9.13 A signed-digit representation of an integer » in radix b is given by

-1
n= Znibi with |n;| < b.
=0

A signed-binary representation corresponds to the particular choice b = 2 and n; € {—1,0,1}.

It is denoted by (n¢—1 ... ng)s and usually obtained by some recoding technique. The represen-
tation is said to be in non-adjacent form, NAF for short, if n;n;.1 = 0, for all ¢ > 0. It is denoted
by (ng_l .. .no)NAF.

For example, take n = 478 and let 1 = —1. Then (1011100110); is a signed-binary representation
of n. The first recoding technique was proposed by Booth [BOO 1951]. It consists of replacing
each string of ¢ consecutive 1 in the binary expansion of n by 1 followed by a string of ¢ — 1
consecutive 0 and then 1. For 478 = (111011110)s it gives (1001100010);. Obviously, the signed-
binary representation of n is not unique. However, the NAF of a given n is unique and its Hamming
weight is minimal among all signed-digit representations of n. For example, the NAF of 478 is equal
to (1000100010)nar. On average the number of nonzero terms in an NAF expansion of length £
is equal to £/3. See [BOS 2001] for a precise analysis of the NAF density. There is a very simple
algorithm to compute it [REI 1962, MOOL 1990].

Algorithm 9.14 NAF representation

INPUT: A positive integer n = (ngne—1 ...no)2 wWith ng = ng—1 = 0.
OUTPUT: The signed-binary representation of n in non-adjacent form (njy_; . .. n()NAF.

1. ¢« 0

2. fori=0 to/{—1 do

3 Cit1 — [(ci+ni+niy1)/2]
4. n; «— c; +ni — 2ci11
5

return (ny_ ...n{)NAF

Remarks 9.15

(i) Algorithm 9.14 subtracts n from 3n with the rule 0 — 1 = 1 and discards the least
significant digit of the result. For each i, ¢; is the carry occurring in the addition n +
2n. Let s; = ¢; + ny + ni41 — 2¢;41 so that the binary expansion of 3n is equal to
(S¢—1...50m0)2. Now n} = ¢; + n; — 2¢;41 € {1,0,1} . The following observation
ensures the non-adjacent property of the expansion [JOYE 2000]. If n; # 0, we have
¢; +n; = 1, which implies that ¢;; 1 = n;41. So 1, = 2(n;41 — ¢;42) must be zero.

(i) Finding a signed-binary representation in non-adjacent form can be done by table lookup.
Indeed ¢;41 and n}, computed in Lines 3 and 4, only depend on n;1, n; and ¢; giving
just eight cases.

(iii) Algorithm 9.14 operates from the right to the left. Since most of the exponentiation
algorithms presented so far process the bits from the left to the right, the signed-binary
representation must first be computed and stored. To enable “on the fly” recoding, which
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is particularly interesting for hardware applications, cf. Chapter 26, Joye and Yen de-
signed a left-to-right signed-digit recoding algorithm. The result is not necessarily in
non-adjacent form but its Hamming weight is still minimal [JOYE 2000].

(iv) Algorithms 9.1, 9.2, 9.7, and 9.10 can be updated in a trivial way to deal with signed-
binary representation.

(v) A generalization of the NAF is presented below; see Algorithm 9.20.

Example 9.16 Again take n = 11957708941720303968251. Algorithm 9.14 gives
n = (101000100001001010100101000010000000101010101000010010000000100000000001 01 ) NaF-

Now one can combine this representation to a sliding window algorithm of length 4 to get the

following decomposition

(1010001 00001001 0101 00 101 00001 000000010101010_1 00001001 0000000 1 0000000000 101 )NAF.
5 1 7 5 3 1 -5 -3 -1 -9 1 -5

The number of operations, precomputations included, is 90, namely 18M + 72S.

Koyama and Tsuruoka [KOTS 1993] designed another transformation, getting rid of the condition
n;ni+1 = 0 but still minimizing the Hamming weight. Its average length of zero runs is 1.42 against
1.29 for the NAF.

Algorithm 9.17 Koyama-Tsuruoka signed-binary recoding

INPUT: The binary representation of n. = (ny_; ...ng)a.
OUTPUT: The signed-binary representation (1 . .. no)s of n in Koyama—Tsuruoka form.

1. m—0,t—0j<—0u—0v—0w+<—0y«—0andz«—0

2. while i < |lgn] do

3. if n;=1then y«—y+lelsey«—y—1

4. 1—1+4+1

5. if m =0 then

6. if y—2z >3 then

7. while j <w do n; =bjandj «— j+1

8. nj«——-1,7—j+lLv—yu—iandm 1
9. elseif y < z then z «<—yandw <1

10. else

11. if v—y >3 then

12. while j <u do nj =b; —landj «—j+1
13. nj«—1,j—j+1lz—y w<iandm—0
14. elseif y > v then v« yandu « ¢

15. if m=0 or (m=1 and v < y) then

16. while j < ¢ do n; =b; —mandj«—j+1

17. n; «— l—mandn;ii < m

18. else

19. while j <u do nj =b; —landj «— j+1

20. n; <« landj <« j+1
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21. while j <¢ do n; =bjandj «— j+1
22. n; < landn;;1 <0

23.  return (ng...no)s

This approach gives good results when combined with the sliding window method.

Example 9.18 For the same n = 11957708941720303968251, a sliding window exponentiation of
length 4 based on the expansion given by Algorithm 9.17 corresponds to

(101000100001 0001011 0001100001 000000010100 1101 00001001 0000000 1 0000000000 101 )s.
5 1 1 1 3 1 3 —9 1 —5

—1 -5 —

In total 89 operations are necessary, i.e., 17M + 725, including the precomputations.

Now one introduces a generalization of the NAF, which combines window and signed methods as
suggested in [MOOL 19go] and explained in [COMIT 1997, COH 2005].

Definition 9.19 Let w be a parameter greater than 1. Then every positive integer n has a unique
signed-digit expansion

-1
n= E n; 2"
i=0
where
« each n; is zero or odd

. |n7| < qw—l
« among any w consecutive coefficients at most one is nonzero.

An expansion of this particular form is called width-w non-adjacent form, NAF,, for short, and is
denoted by (n/—1 . ..10)NAF,, -

In [AVA 2005a], Avanzi shows that the NAF,, is optimal, in the sense that it is a recoding of
smallest weight among all those with coefficients smaller in absolute value than 2!, See also
[MUST 2004] for a similar result.

A generalization of Algorithm 9.14 allows us to compute the NAF,,, of any number n > 0.

Algorithm 9.20 NAF,, representation

INPUT: A positive integer n and a parameter w > 1.
OUTPUT: The NAF,, representation (n¢—_1 . . . 7o )NaF,, Of n.

1. <0

2. while n >0 do

3. if nisodd then

4 n; < n mods 2%
5 n+—mn-—n;

6. elsen; — 0

7. n«—n/2andi—i+1

8. return (n;_1...no)NAF,




154 Ch. 9 Exponentiation

Remarks 9.21

(i) The function mods used in Line 4 of Algorithm 9.20 returns the smallest residue in
absolute value. Hence, n mods 2% belongs to [—2%*~1 + 1, 2% 1],

(ii) For w = 2 the NAF,, corresponds to the classical NAF, cf. Definition 9.13.

(i) The length of the NAF,, of n is at most equal to [lgn| + 1. The average density of the
NAF,, expansion of n is 1/(w + 1) as n tends to infinity. For a precise analysis, see
[COH 2005].

(iv) A left-to-right variant to compute an NAF,, expansion of an integer can be found both
in [AVA 2005a] and in [MUST 2005]. The result may differ from the expansion pro-
duced by Algorithm 9.20 but they have the same digit set and the same optimal weight.

(v) Let w > 1 and precompute the values 23, ... 2+ (2*7'=1) Then in Algorithm 9.1 it
is sufficient to replace the statement

4, ifn;=1then y«—x Xy

by

4. if n; #0 then y «— z™ Xy

to take advantage of the NAF,, expansion of n = (ny_1 ... no)Nar, to compute 2"

(vi) See [MOL 2003] fora further generahzatlon called the S gned fractional window method
where only a subset of {x gE@ -y } is actually precomputed.

Example 9.22 For n = 11957708941720303968251 and w = 4 one has

n = (500010000000700050000300001000000010005000300010007000000010000000000005 )NAF,,

where m; = —n,. With this representation and the modification of Algorithm 9.1 explained above
x™ can be obtained with 3M + S for the precomputations and then 12M + 698, that is 85 operations
in total.

9.1.5 Multi-exponentiation

The group G is assumed to be abelian in this section.

It is often needed in cryptography, for example during a signature verification, cf. Chapter 1, to
evaluate x,°z]"* where zo,z1 € G and ng,n; € Z. Instead of computing z(° and z]* separately
and then multrplylng these terms, it is suggested in [ELG 1985] to adapt Algorlthm 9.1 in the
following way, in order to get z3°z* in one round. Indeed, start from y < 1. Scan the bits of ng
and ny 51mu1taneously from the left to the right and do y < y2. Then if the current bits of o are

(1) (1) or multlply by xg, x1 or gz accordingly.

For example, to compute 23! 216 write the binary expansion of 51 and 166

51 = (00110011),
166 = (10100110)4
and apply the rules above so that the successive values of y are at each step 1, z1, 23, roz}, 3710,
w5230, xi2att, 225283, and finally 252166,
This trick is often credited to Shamir although it is a special case of an idea of Straus [STR 1964]
described below. Note that the binary coefficients of n; are denoted by n; . If necessary, the
expansion of n; is padded with zeroes in order to be of length .
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Algorithm 9.23 Multi-exponentiation using Straus’ trick

INPUT: The elements zo,...,zr—1 € G and the ¢-bit positive exponents nog, ..., nr—1. For
each ¢ = (ir—1...%0)2 € [0,2" — 1], the precomputed value g; = ;;é x;J
OUTPUT: The element 23° - - - " 7.
1. y«1
2. for k=/—1 downto O do
3 y —y°
4. i 3T n k2’ [i = (nr—1k - .10,k)2]
5 Y <— Y Xg;

6. return y

Remarks 9.24

() Computing z3° ...z,"7" in a naive way requires 7/ squarings and r¢/2 multiplications
on average. With Algorithm 9.23, precomputations cost 2" — r — 1 multiplications, then
only ¢ squarings and (1 — 1/2")¢ multiplications are necessary on average. However
one needs to store 2" — r values.

(i) One can use Algorithm 9.23 to compute z™. To do so, write n = (ny_1...n0)p in
base b, then set #; = 2*" and compute " = Hf;é x;'*. This approach can be seen as a

baby-step giant-step algorithm, where the giant steps " are computed first.

(iii) All the improvements of Algorithm 9.1 described previously apply to Algorithm 9.23
as well. In particular the use of parallel sliding window leads to a faster method; see
[AVA 2002, AVA 2005b, BER 2002] for a general overview on multi-exponentiation.

Example 9.25 Let us compute 3121, One has 31021 = (7 36 45)g4, so that 2™ = 23523527

where o = z, 1 = 2% and x5 = 254° | First precompute the g;’s
liJo 1 2 3 4 5 6 7
| gi |l xo 1 XoT1 X2 Tox2 T1T2 ToXT1T2 |
Then one gets
k] 5 4 3 2 1 0o |
nag| 0 0 0 1 1 1
n1k 1 0 0 1 0 0
nox | 1 0 1 1 0 1
i 3 0 1 7 4 5
Y Tox1 x%xf wgw% xélwﬁ)wg x%%%%% x85w§6x5

To improve Straus’ method in case of a double exponentiation within a group where inversion can
be performed efficiently, Solinas [SOL 2001] made signed-binary expansions come back into play.

Definition 9.26 The joint sparse form, JSF for short, of the ¢-bit integers ng and n; is a representa-

tion of the form
(no) o (n07g...n070>
ni TLLg e 711’0 JSF
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such that

« of any three consecutive positions, at least one is a zero column, that is for all ¢ and all
positive j one has n; j 1 = n1_; 1 = 0, for at least one & in {0, =1}

+ adjacent terms do not have opposite signs, i.e., it is never the case that n; jn; ;11 = —1

e if n; j41mi; # Othenonehasny_; j41 = T 1landn;_;; = 0.

The joint Hamming weight is the number of positions different from a zero column.

Solinas also gives an algorithm to compute the JSF of two integers.

Algorithm 9.27 Joint sparse form recoding

INPUT: Nonnegative ¢-bit integers no and n, not both zero.
OUTPUT: The joint sparse form of ng and n;.

1. j<—O,So:(),81:(),do<—0andd1<—0
2. while no +dop >0 or n;1 +di >0 do

3 Lo «—do +mno and ¥y «— di + n1

4. for ;=0 to 1 do

5 if ;=0 (mod 2) then r; — 0

6 else

7. ry < {; mods 4

8. if £,= 13 (mod 8) and ¢1_; =2 (mod 4) then r; — —r;
9. Si — 1| Si [r; prepended to S|
10. for ;=0 to 1 do

11. if 2d; =1+ n} then d; — 1 —d;

12. ni «— |ni/2|

13. je—j+1

14. return Sy and Sy

Remarks 9.28

(i) The joint sparse form of ny and n, is unique. The joint Hamming weight of the JSF
of ng and n; is equal to £/2 on average and the JSF is optimal in the sense that it has
the smallest joint Hamming weight among all joint signed representations of ng and n;
[SOL 2001].

(i) The naive computation of z:3°x7" involving NAF representations of ng and n1 requires
2¢ squarings and 2¢/3 multiplications on average. Only ¢ squarings and £/2 multiplica-
tions are necessary with the JSF, neglecting the cost of the precomputations of xgx; and
xo/x1. Applying Straus’ trick with two integers in NAF results in a Hamming weight
of 5¢/9 on average.

(i) In [GRHE™ 2004], Grabner et al. introduce the simple joint sparse form whose joint
Hamming weight is also minimal but which can be obtained in an easier way.
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Example 9.29 Let us compute 23'21%. The joint NAF expansion of 51 and 166 is

51 = (01010101)nar
166 = (10101010)NaF.

Its joint Hamming weight is 8. The JSF of 51 and 166, as given by Algorithm 9.27, is

( 51 ) B (001010011)
166,/ \ 101011010 / jsp

with a joint Hamming weight equal to 6.

The next section is devoted to the case when several exponentiations to the same exponent n have
to be performed.

9.2 Fixed exponent

The methods considered in this section essentially give better algorithms when the exponent n is
fixed. They rely on the concept of addition chains. However, the computation of a short addition
chain for a given exponent can be very costly. But if the exponent is to be used several times it is
probably a good investment to carry out this search.

In the following, different kinds of addition chains are discussed, then efficient methods to actu-
ally find short addition chains are introduced before related exponentiation algorithms are described.

9.2.1 Introduction to addition chains

Definition 9.30 An addition chain computing an integer n is given by two sequences v and w such
that

v = (vg,...,0s), vo=1,vs=mn
v; = v;+u forall 1 <4< s withrespectto
w = (wy,...,ws), w; = (j,k) and 0<j,k<i—1. 9.1)

The length of the addition chain is s.
A star addition chain satisfies the additional property that at each step v; = v;_1 + vy, for some
ksuchthat 0 < k <7 — 1.

Note that one should write v; = v;(;) + vi(;) since the indexes depend on . They are omitted for
the sake of simplicity. Sometimes only v is given since it is easy to retrieve w from v. For example
v =(1,2,3,6,7,14,15) is an addition chain for 15 of length 6. It is implicit in the computation
of 2! by Algorithm 9.1. In fact binary or window methods can be seen as methods producing and
using special classes of addition chains but it is often possible to do better, that is to find a shorter
chain. For instance (1,2, 3,6, 12, 15) computes also 15 and is of length 5.

For a given n, the smallest s for which there exists an addition chain of length s computing n is
denoted by ¢(n). It is not hard to see that £(15) = 5 but the determination of #(n) can be a difficult
problem even for rather small n.

As complexities of squarings and multiplications are usually slightly different, note that a carefully
chosen complexity measure should take into account not only the length of the chain but also the
respective numbers of squarings and multiplications involved. For example (1,2,4,5,6,11) and
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(1,2,3,4,8,11) compute 11 and have the same length 5. However the first chain needs 3 multipli-
cations whereas the latter requires only 2.
There is an abundant literature about addition chains. It is known [SCH 1975, BRA 1939] that

lg(n) + lg(u(n)) —2.13 < l(n) <lg(n) + 1g(n)(1 + 0(1))/1g(lg(n))7

where v(n) is the Hamming weight of n.

As said before, finding an addition chain of the shortest length can be very hard. To make this pro-
cess easier, it seems harmless to restrict the search to star addition chains. But Hansen [HAN 1959]
proved that for some n, the smallest being n = 12509, there is no star addition chain of minimal
length ¢(n). The shortest length ¢(n) has been determined for all n up to 22°, pruning trees to speed
up the search [BLFL]. See also Thurber’s algorithm, which is able to find all the addition chains for
agiven n [THU 1999]. The hardness of this search depends primarily on v(n), so that it is longer to
find the minimal length of 191 = (10111111)5 than 1048577 = (100000000000000000001 )2, but
the running time can be quite long, even for small integers with a rather low density.

The concept of addition chain can be extended in at least three different ways.

Definition 9.31 An addition-subtraction chain is similar to an addition chain except that the condi-
tion v; = v; + vy, is replaced by v; = v; + vg or v; = v; — Vg.

For example, an addition chain for 314 is v = (1,2,4,8,9,19, 38,39, 78,156, 157, 314). The addi-
tion—subtraction chain v = (1,2, 4,5, 10, 20, 40, 39, 78, 156, 157, 314) is one term shorter.

Definition 9.32 An addition sequence for the set of integers S = {ng,...,n,—1} is an addition
chain v that contains each element of .S. In other words, for all 7 there is j such that n;, = v;.

For example, an addition sequence computing {47,117, 343,499, 933, 5689} is
(1,2,4,8,10,11, 18, 36, 47,55,91, 109, 117,226, 343,434,489, 499, 933, 1422, 2844, 5688, 5689 ).

In [YAO 1976], it is shown that the shortest length of an addition sequence computing the set of
integers {ng, . .., n,_1} is less than

lgN +crlgN/1glg N,
where N = max;{n;} and c is some constant.

Definition 9.33 Let k£ and s be positive integers. A vectorial addition chain is a sequence V' of
k-dimensional vectors of nonnegative integers v; for —k + 1 < ¢ < s together with a sequence w,
such that

vope1 = [1,0,0,...,0,0]
Vopys = [0,1,0,...,0,0]
vw = [0,0,0,...,0,1]
v, = vj+u forall 1<i<s with —k+1<j,k<i—1
vs = [ng,...,Np_1]
w o= (wi,...,ws), w; = (J, k). 9.2)

For example, a vectorial addition chain for [45, 36, 7] is

V = ([1’070]7 [07 170]7 [070’ 1]7 [171’0]7 [272’0]’[474?0]’[57470]7[10?870]7
[11,9,0], [11,9, 1], [22, 18, 2], [22, 18, 3], [44, 36, 6], [45, 36, 6], [45, 36, 7))
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w o = ((—2,—1),(1,1),(2,2),(—2,3),(4,4),(1,5),((),6),(7,7),(0,8),(9,9),(—2,10),(0,11)).

Since k = 3, the first three terms of V are v_s = [1,0,0], v_1 = [0, 1, 0], and vy = [0, 0, 1]. This
chain is of length 12 and is implicitly produced by Algorithm 9.23.

Addition sequences and vectorial addition chains are in some sense dual. We refer the inter-
ested reader to [BER 2002, STA 2003] for details and to [KNPA 1981] for a more general ap-
proach. In [OLI 1981] Olivos describes a procedure to transform an addition sequence computing
{no,...,ny—1} of length ¢ into a vectorial addition chain of length ¢ 4+ r — 1 for [no, ..., n,_1].

To illustrate his method let us deduce a vectorial addition chain for [45, 36, 7] from the addition
sequence v = (1,2,4,6,7,9,18,36,45) computing {7,36,45}. Let {e; | 0 < j < k} be the
canonical basis of R¥*1, The idea is then to build an array by induction, starting in the lower right
corner with a 2-by-2 array, and then processing the successive elements v, of the addition sequence,
following two rules:

o if v, = 2wv; then the line to be added on top is the double of line 7 and the new two
columns on the left are 2¢ej, and 2ey, + ¢;

» if vy, satisfies vj, = v; 4 v; then the new line on top is the sum of lines 7 and j and the
two columns on the left are e, + ¢; and e, + e;.

The expression of v, in terms of the v;’s is written on the right. The first steps are:

1 1 2 3 6 6 6=4+2
4=2+2
2 2 2=1+1 1 0 (2 2 4 4 4=242
2=1+1 =
0 1 1 1 0O 1 (01 (2 2 2=1+1
0O 0 (0 0 |0 1 1
At the end one has
11 2 2 4 5 5 5 5 5 5 10 10 20 40 45 45=36+9
1 0 (2 2 4 4 4 4 4 4 4 8 8 16 32 36 36 =18+ 18 «
o o0 0 1 |2 2 2 2 2 2 2 4 4 8 16 18 18=9+49
0O 1 (0 0 |0 1 1 1 1 1 1 2 2 4 8 9 9=T7+42
o o0 (0 0|0 O jJ1 01 1 1 1 2 3 6 7 7T=6+1 —
o o0 (0 0 |0OO OO |1 0 |1 1 2 3 6 6 6=4+2
o o0 [0 0 |OO |0OO0O |0 O0 1 O 2 2 4 4 4=2+2
o o0 (0 0 |OO |O1 |00 |0 1 0 1 2 2 2=1+1
o o0 (0 0 |0OO0O |00 |0 1 (|0 O 0 0 0 1 1

Then discard all the lines except the ones marked by an arrow and corresponding to 7, 36, and 45.
Consider the columns from the left to the right, eliminate redundancies and finally add the canonical
vectors of R” so that a vectorial addition sequence for [45, 36, 7] is

([1,0,0],[0,1,0],[0,0,1],[1,1,0],[2,2,0],[4,4,0], 5,4, 0],
[5,4,1],[10,8,1],[10,8,2], [20, 16, 3], [40, 32, 6], [45, 36, 7)).

Conversely the procedure to get an addition sequence from a vectorial addition exists as well
[OLI 1981].

Before explaining how to find short chains, let us remark that the set of vectors (ng,...,n,_1,¥)
such that there is an addition sequence of length ¢ containing ny,...,n,_1 has been shown to
be NP-complete [DOLE™ 1981]. This does not imply, as it is sometimes claimed, that finding a
shortest addition chain for n is NP-complete. However, we have seen that dedicated algorithms to
find a shortest addition chain are in practice limited to small exponents.
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9.2.2 Short addition chains search

In the following, different heuristics to find short addition chains are discussed. They are rather
efficient but do not necessarily find a shortest possible chain. Most of the methods described here
use the concept of dictionary.

Definition 9.34 Given an integer n, a dictionary D for n is a set of integers such that

k
n=> b2, withb; 4 € {0,1} and d € D.
=0

Note that all the algorithms introduced in Section 9.1 can be used to produce addition chains and
implicitly use a dictionary. For example, the dictionary associated to window methods of length &
is the set {1,3,...,2¥ — 1}. For the NAF,, itis { £1, £3,..., £ (2¥"1 - 1)}.

In [GOHA™T 1996, O’CO 2001] the dictionary is simply made of the elements 2! — 1 for 0 < i <
w, for some fixed parameter w.

The power tree method [KNU 1997] is quite simple to implement but it does not always return
an optimal addition chain, the first counter example being n = 77. Like other algorithms exploring
trees it cannot be used for exponents of cryptographic relevance, as the size grows too fast in the bit
size of the exponent and is too large for the required sizes.

A more sophisticated method is described in [KUYA 1998] and is related to the Tunstall method;
see [TUN 1968]. Namely, choose a parameter k, let p be the number of zeroes in the expansion of
n divided by its length ¢ and let ¢ = 1 — p. If the expansion is signed let ¢ = (1 — p)/2. Then
form a tree having a root of weight 1 and while the number of leaves is less than £ + 1 add leaves
to this tree according to the following procedure. Take the leaf of highest weight w and create two
children with weight wp and wq, labeled respectively by 0 and 1. If the expansion is signed create
three children with weight wp, wg, and wg, labeled respectively by 0, 10, and 10, instead. At the
end read the labels from the root to the leaves and concatenate 1 (10 if signed) at the beginning of
each sequence. The dictionary D is the set of odd integers obtained by removing the zeroes at the
end of each sequence. The result is a function of ¢ and of the number of zeroes in the signed-binary
expansion of n. The best choice for the size of the dictionary depends on ¢ and can be as large as
20 for 512-bit exponents [KUYA 1998].

Example 9.35 Take n = 587257 and k = 4. The signed-binary recoding Algorithm 9.14 gives
n = (10010000101000001001 )naF. One has p = 7/10 and ¢ = 3/20. After two iterations, there
are five leaves and D = {(00), (010), (010), (10), (10)} as shown below

010

10

[ ] —t [ ] [ ] [ ]
g 1 g
10 \)A

[ ]

Then concatenate (10) at the beginning of each sequence of D and remove all the zeroes at the end
to finally get D = {1, 3,5,7,9}. From this one can compute n = 29 + 216 — 5 x 29 — 7,

Yacobi suggests a completely different approach [YAC 1998], namely to use the well-known
Lempel-Ziv compression algorithm [ZILE 1977, LEZI 1978] to get the dictionary.

At the beginning the dictionary is empty and new elements are added while the binary expansion
of the exponent is scanned from the right to the left. Take the longest word in the dictionary that
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fits as prefix of the unscanned part of the exponent and concatenate it to the next unscanned digit
of the exponent to form a new element of the dictionary. Repeat the process until all the digits are
processed. There is also a sliding version that skips strings of zeroes.

Example 9.36 For n = 587257 one gets (10001111010111111001), and the dictionary

{1,0,2,3,7,2,15,0, 2}, which actually gives rise to D = {1,3,7,15}. One hasn = 1 x 2% +
15 x 212 41 x 210 47 % 25 + 3 x 24 + 1 x 23 + 1 so that an addition chain for n is

(1,2,3,4,7,8,15,16, 32,64, 128,143,286, 572, 573, 1146, 2292, 4584,
9168, 9175, 18350, 36700, 36703, 73406, 73407, 146814, 293628, 587256, 587257)

whose length is 28.
The sliding version returns D = {1, 3,5, 7} from the decomposition

Inthiscasen =1 x 219 +7x 2183 +5x 210 4+ 1 x 28 47 x 26 + 3 x 23 + 1 and an addition chain
for n is

(1,2,3,5,7,8,16, 32,64, 71,142, 284, 568, 573, 1146, 2292, 2293, 4586,
9172, 18344, 18351, 36702, 73404, 73407, 146814, 293628, 587256, 587257)

of length 27.

This method can also be used with signed-digit representations and is particularly efficient when the
number of zeroes is small.

In [BEBE™ 1989] continued fractions and the Euclid algorithm are used to produce short addition
chains. First let ® and @ be two simple operations on addition chains, defined as follows. If
v = (vo,...,vs) and w = (wp, ..., w;) then

VR W = (Vg ..., Vs, VsW0, ..., VsWt)

and if j is an integer

’U@j: ('U(),...,'US,’US +j)

Now let 1 < k < n be some integer. Then
(1,...,k,...,n)=(1,...,nmod k,..., k) ®(1,..., [n/k]) ® (n mod k). 9.3)

The point is to choose the best possible k. If k = [n/2] then the addition chain is equal to the one
obtained with binary methods. Instead the authors propose a dichotomic strategy, that is to take

n

The rule (9.3) is then applied recursively in minchain(n), which uses the additional procedure
chain(n, k),
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minchain(n)
1. if n= 2" then return (1,2,4,...,2%)
2. if n =23 then return (1,2,3)
3. return chain(n,ZUg”/QJ)

and
chain(n, k)
1. ¢« |n/k]andr < n mod k
2. if r =0 then return (minchain(k) ® minchain(q))
3. elsereturn chain(k,r) ® minchain(q) ®r

Note that these algorithms are able to find short addition sequences as well.
Example 9.37 For n = 87, one has k = |87/8| = 10 and the successive calls are

chain(87,10)

chain(10,7) ® minchain(8) & 7

(chain(7,3) ® minchain(1l) ® 3) ® minchain(8) & 7

((minchain(3) ® minchain(2) & 1) ® minchain(1) @ 3) ® minchain(8) & 7

so that the final result is the optimal addition chain (1,2, 3,6, 7, 10, 20, 40, 80, 87).

In [BEBE™ 1994], the authors generalize this approach, introducing new strategies to determine a
set of possible values for k. So the choice of k is no longer deterministic and it is necessary to
backtrack the best possible k. For the factor method, see also [KNU 1997], one has

ke{n—1} if n is prime
ke {n—1,p} ifpis the smallest prime dividing n.

For the total strategy, k& € {2,3,...,n — 1}. For the dyadic strategy,

ke“%}j:l,...}-

Note that only Fermat’s strategy, where

ke{szJ’j:O,l,...}

has a reasonable complexity and is well suited for large exponents.

Example 9.38 The corresponding results for 87 are all optimal and given in the next table.

Strategy | Initial & Result |
Factor 3 (1,2,3,6,12,24,48,72,84,87)
Total 17 (1,2,4,8,16,17, 34, 68,85,87)
Dyadic 2 (1,2,4,6,10, 20,40, 80, 86, 87)
Fermat 5 (1,2,3,5,10,20,40, 80, 85, 87)

In [BoCo 1990] Bos and Coster use similar ideas to produce an addition sequence. See also
[COSTER]. Starting from 1,2 and the requested numbers . .., fo, f1, f they replace at each step
the last term by new elements produced by one of four different methods. A weight function helps
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to decide which rule should be used at each stage. Here is a brief description of these strategies with
some examples.

Approximation

Condition 0 < f — (fi + f;) = e with f; < f; and € small
Insert fite
Example 49 67 85 117 — 49 50 67 85 (because 117-(49+67)=1)

Division
Condition  f is divisible by p € {3,5,9,17}. Let (1,2,...,a, = p) be an addition chain for p
Insert f/p72f/pa"'7ar—1f/p

Example 17 48 — 16 17 32 (because 48/3=16 and (1,2,3) computes 3)

Halving
Condition  f/f; > 2% and | f/2%] =k
Insert k,2k,... k2%

Example 14 382 — 14 23 46 92 184 368 (because 382/14 > 2¢ and L382/24J =23)
Lucas

Condition  f and f; belong to a Lucas series (f; = wg, f = ug, k > 3 and ;41 = u; + u;—1)
Insert UL, Uy vy U—1
Example 4 23—4 5 9 14 (because 4,5,9,14,23 is a Lucas series)

For faster results use only Approximation and Halving steps. The choice is simpler and does not
require any weight function.

Example 9.39 This method applied to {1,2,47,117, 343,499,933, 5689} returns
(1,2,4,8,10,11, 18, 36, 47, 55,91, 109, 117,226, 343,434,489, 499, 933, 1422, 2844, 5688, 5689 ).
The method of Bos and Coster when combined to a sliding window of big length allows us to

compute ™ with a dictionary of small size and no precomputation. The following example is taken
from [BoCo 1990].

Example 9.40 Let n = 26235947428953663183191 and take a window of length 10 (except for
the first digit corresponding to a window of length 13). Then

n=(1011000111001 0000001110100101 001110101 000000101111 00000111110011 00101010111 )2

5689 933 117 47 499 343

so that the dictionary is D = {47,117, 343,499,933, 5689} and the corresponding addition chain
built with D is of length 89. By way of comparison, Algorithms 9.1 and 9.10 need respectively 110
and 93 operations.

Finally, see [NEMA 2002] for techniques related to genetic algorithms.

9.2.3 Exponentiation using addition chains

Once an addition chain for n is found it is straightforward to deduce 2™.
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Algorithm 9.41 Exponentiation using addition chain

INPUT: An element z of G and an addition chain computing n i.e., v and w as in (9.1).
OUTPUT: The element z".

1. X1+ x
2. fori=1 to s do z; < z; X Xk [w(i) = (4, k)]

3. return =,

Example 9.42 Let us compute 2°'4, from the addition chain for 314 given below

iJo 1 2 3 4 5 6 7 8 9 10 11 12|
v |1 2 4 8 9 18 19 38 39 78 156 157 314
wi | — (0,00 (1,1) (2,2) (3,0) (44) (5,0) (6,6) (7,0) (88) (9,9) (10,0) (11,11)
z; T 272 274 CCS 279 2718 119 2738 2739 x78 x156 x157 x314

Vectorial addition chains are well suited to multi-exponentiation. Here again G is assumed to be
abelian.

Algorithm 9.43 Multi-exponentiation using vectorial addition chain

INPUT: Elements xo, ...,xr—1 of G and a vectorial addition chain of dimension r computing
[no, . ..,nr—1] asin (9.2).
OUTPUT: The element 23° - - - "7 *.

1. fori=—-k+1 to 0 do y; < Titr_1

2. fori=1 to s do y; < y; X Yk [w(i) = (4, k)]

3. return y;

The vectorial addition chain for [45, 36, 7] implicitly produced by Algorithm 9.23 is of length 12.
A careful search reveals a chain of length 10 as it can be seen in the next table, which displays the
execution of Algorithm 9.43 while computing z3°z3627 with it. Recall that y_s = x¢, y_1 = 73
and yo = xa.

R 2 3 4 5 6 7 8 9 10 |
yi | wow:i  xdat wdat  whal  abrize 20’2fze x0%2frd 2izi®2d 202728 28°2ita]
I

9.3 Fixed base point

In some situations the element z is always the same whereas the exponent varies. Precomputations
are the key point here.
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9.3.1 Yao’s method

A simpler version of Algorithm 9.44, which can be seen as the dual of the 2*-ary method, was first
described in [YAO 1976]. A slightly improved form is presented in [KNU 1981, answer to exercise
9, Section 4.6.3]. Note that it is identical to the patented BGMW’s algorithm [BRGO™ 1993].

Let n, n;, b;, £ and h be integers. Suppose that

£—1
n=> nib; with 0 <n; <h forallie [0,(—1]. ©.4)
=0

Let 2; = x%. The method relies on the equality

—1 h—1 p
n ni __
=Tl =T [T«
i=0 j=1 Ln;=j

Algorithm 9.44 Improved Yao's exponentiation

INPUT: The element = of (G, an exponent n written as in (9.4) and the precomputed values
bo ,.b1 by_1
0z .

OUTPUT: The element 2.

1. y«—lu«—landj«—h—1

2. while 7 >1 do

3. for i=0 to {—1 do if n; = then u «— u x z
4. Y—yXxXu
5. J—j—1
6. return y
Remarks 9.45

. J
(i) The term { H xl} is computed by repeated iterations in Line 4.
ni=j
One obtains the correct powers x;* as in each round the result is multiplied with « and
x; 1s included in u for n; rounds.
(ii) The choice of h and of the b;’s is free. One can set h = 2* and b; = h' so that the n;’s
are simply the digits of n in base h.

(iii) One needs ¢ + h — 2 multiplications and ¢ + 1 elements must be stored to compute ™.

Example 9.46 Let us compute 22939, Set h = 4, b; = 4% then 2989 = (232231), and / = 6.

Suppose that z, 24, 216, 264, 2256 and 21924 are precomputed and stored.
] 3 2 1 |
U 1141}256 — l’260 1'26023'1623641}1024 — x1364 l’l364$ — 1'1365

2 2 1364 1624 1624 .1 2
y .7)60 .7)601’36 :Z’G .7)61’365:1’989
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9.3.2 Euclidean method
The Euclidean method was first introduced in [ROO 1995], see also [SEM 1983]. Algorithm 9.47

computes z" generalizing a method to compute the double exponentiation x;°xz]* discussed by
Bergeron et al. [BEBET 198g] which is similar to the technique introduced in Section 9.2.2 to find
short addition chains. The idea is to recursively use the equality

opoztt = (zoxf)" x & ™ ™) where ¢ = [n1/no].

Algorithm 9.47 Euclidean exponentiation

INPUT: The element x of (&, an exponent n as in (9.4) and the precomputed values x¢o =
2% =% mey = abe-t,
OUTPUT: The element 2.

1. while true do

2. Find M suchthat ny > n, forall i € [0,£ — 1]

3. Find N # M suchthatny > n; forall i € [0, —1], i # M

4. if ny # 0 then

5. qg— |nm/nn|,en — zpm? X zn and na — ny mod ny
6. else break

%
7. return x,;

Example 9.48 Take the same exponent 2989 = (23223 1)4 and let us evaluate 22989,

ns na n3 n2 n1 no | M N ¢ ‘ Ts Ta €3 To T1 )
_ . . | ] jwe2a 256 64 216 4 =

2 3 2 2 3 1|4 1 1 |gt02 26 61 6 ;260 x

9 0 9 9 3 1 1 9 1 | g1024 256 64 2276 260 =

9 0 9 9 1 1 5 3 ] | gl024 256 1088 276 260 .

0 0 9 9 1 1 3 9 ] | gl024 256 1088 1364 260 .

0 0 0 9 1 1 9 1 2o | 41024 256 1088 1364 2088 =

0 0 0 0 1 1 1 0 1 | pl024 256 1088 1364 2088 2080

0 0 0 0 0 1 0 1 | plo24 256 1088 1364 2088 2089

9.3.3 Fixed-base comb method

This algorithm is a special case of Pippenger’s algorithm [BER 2002, PIP 1979, PIP 1980]. Itis also
often referred to as Lim—Lee method [LILE 1994]. It is essentially a special case of Algorithm 9.23
where the different base points are in fact distinct powers of a single base. Suppose that n =
(ng—1...ng)2. Select an integer h € [1,¢]. Let a = [£/h] and choose v € [1,a]. Let r = [a/v]
and write the n;’s in an array with A rows and a columns as below (pad the representation of n with
zeroes if necessary)
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a—1 1 0
Na—1 ni no
N2q—1 Na+1 Na
Nah—1 Nah—a+1 Nah—a

For each s, the column number s can be read as the binary representation of an integer denoted by
I(s). For example the last column 7(0) is the binary representation of I(0) = (ngh—q - - - a"0)2-

The algorithm relies on the following equality

r—1 [fv—1

o =[] | [ Gl 16T + k)]

k=0 \ j=0

where
277

2k

h—1
Glj,i] = <H x2> forj € [0,v — 1] and i = (i,_1 ...i0)2 € [0,2" —1].
s=0

Algorithm 9.49 Fixed-base comb exponentiation

INPUT: The element z of G and an exponent n. Let h, a, v, and G[j, i] be as above.

OUTPUT: The element ™.

1. y«—landk«—r—1

2. for k=r—1 downto O do

3 y —y°

4. for j =v—1 downto 0 do
5 I — Z]:;é Nastjr4k2’
6. y —yxG[j,1]

7. return y

I =1I(jr+k)

Example 9.50 Once again, let us compute 22989 Set h = 3 and v = 2 so that « = 4 = rv, hence
r = 2. Form the following array from the digits of 2989 = (101110101101),

s 3 2 1 0]

Ng...NgQ 1 1 0 1

Ngt+s---Ng |1 0 1 0

N2g+s -+ -N2q 1 0 1 1

1(s) 7T 1 6 5

The precomputed values are
i o1 2 3 4 5 6 T

G[O Z] 1 T .1‘16 .T).T)lG .1‘256 .T).T)QSG 1’16.7)256 1’1’161)256
G[l Z] 1 .T)4 .T)64 1’41’64 1’1024 1’41’1024 .T)64.T)1024 1’41’64.1'1024
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The algorithm proceeds as follows

k 11 1 0 0 0

i = 1 0 — 1 0
jr+k|— 3 1 — 2 0

I | — 7 6 — 1 5
G[], [] .1'1092 1’272 _ 3,’4 1’257

y 1 1,'1092 1}1364 l’2728 l’2732 1}2989

Remarks 9.51

(i) One needs at most a + r — 2 multiplications and v(2" — 1) precomputed values. If
squarings can be achieved efficiently or “on the fly” (for example in finite fields of even
characteristic represented through normal bases, see Section 11.2.1.c), only 2" —1 values

must be stored.

(i) The adaptation of this method to larger base representations or signed representations
such as the non-adjacent form is straightforward.
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In most of the cases, the integer ring Z is the fundamental mathematical layer of many cryptosys-
tems. Once it is possible to compute with integers, one can build on top of them finite fields, then
curves and even more complicated objects. More generally, rational, real, complex, and p-adic
numbers, but also polynomials with coefficients in these sets, rely on integers and their arithmetic
is greatly influenced by the underlying integer algorithms. That is why integer arithmetic is so
important and should be performed as efficiently as possible.

Practical considerations are therefore the core of this chapter. For instance, we first recall some
elementary notions on computers to describe how numbers are internally represented and how we
can manipulate them. Then we describe the four operations and related items such as square root
computations or extended gcd algorithms.

All the techniques for an efficient implementation from scratch are presented in the following
chapter. However, there already exist a great number of libraries that are highly optimized and
available on the Internet. Most of them are written in C, like GMP [GMP], BigNum [BIGNUM] or
FreeLip [FREELIP].

169
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Sometimes, different algorithms are given for the same operation. In this case, the size of the
operands mainly determines which method should be used. The algorithms presented here have
been directly taken from [MEOO™ 1996], [KNU 1997], [CRPO 2001], and [COH 2000].

10.1 Multiprecision integers

Without special software or hardware, computers can only operate on rather small integers. In
order to consider larger quantities, we first need to recall some elementary facts on integers and
computers.

10.1.1 Introduction

Let b > 2 be an integer called the base or the radix. Every integer . > 0 can be written in a unique
way as the sum

U= Uy 10"+ urh+ ug

provided 0 < u; < band u,_1 # 0. This is what we will call the base b representation of u and
will be denoted by (t;,—1 - .. ug)p. When b is understood, it will be usually omitted and u simply
written as © = (un—1 ... ug). The u;’s are the digits of u, u,,—1 and uy being respectively the most
significant digit of u and the least significant digit of u. The precision of w is the largest ¢ such that
u;—1 > 0. It corresponds to the length n of (u,_1 ... up), and is denoted |u|p.

Remarks 10.1

(i) The base b representation of zero is always (0)p.

(i) It is sometimes useful to add a certain number of zeroes at the beginning of the repre-
sentation of w, i.e., to consider (0...0uy,_1...up)p. This operation, which obviously
does not change the value of u, is called padding.

In a computer, the base b is usually a power of 2 and a number is internally stored as a sequence of
0 and 1 called bits. The important elementary operations on bits are the following. Given two bits
x and y, we can compute the

« complement of = denoted by T, which is equal to 1 if and only if = equals 0
o conjunction of x and y, x A y, which is equal to 1 if and only if « and y both equal 1
o disjunction of x and y, x\VVy, which is equal to 1 if and only if at least one of x, y equals 1

o exclusive disjunction of x and y, also called XOR. The result x XOR y is equal to 1 if
and only if exactly one of the two values z, y equals 1.

Usually computers cannot manipulate bits directly. The smallest quantity of main memory that
a computer can address is a byfe, which is nowadays almost always a sequence of eight bits. A
processor can operate on several bytes at the same time by means of a register. This important
hardware component determines very low-level properties of a processor. The size of a register,
called a word, is one of the main characteristics of a chip. Modern computers commonly use words
of 32 or 64 bits, however it is not unusual, especially in the smart card world, to work with 8 or
16-bit devices.
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10.1.2 Internal representation

A single precision integer, also called a 1-word integer, or just a single needs only a word to be
represented. For 32-bit architectures such integers belong to [0, 232 — 1]. The concept of multipreci-
sion was introduced in order to manipulate objects that do not fit in a word. In this case, an array of
consecutive words is allocated and for instance a n-word integer is an integer whose representation
requires n words.

There are several ways to store information in the memory of a computer, the order being espe-
cially important. Usually a byte comes with the most significant bit first. To describe the ordering
of bytes within a word, there is a specific terminology. Namely, in little endian format the least
significant byte is stored first, whereas in big endian representation, the sequence begins with the
most significant byte. For instance, on a 32-bit PC, the single 262657 = 28 + 29 4 1 is represented
in little endian format by 00000001 00000010 00000100 00000000. The representation of the same
integer in big endian, commonly used in RISC architectures, is 00000000 00000100 00000010
00000001. To represent multiple precision integers, the same kind of choice occurs for words as
well. Note that when the least significant word comes first, as it is the case for many multiprecision
implementations, an integer can have different representations with as many high order zeroes as
wanted. To illustrate the exposition, we will give examples more classically written with the most
significant word first.

For example, take u = (1128103691808033)10 and b = 232. Then u has 51 digits in base 2,
namely

u = (1000000001000000001 00011011110100011110110100100001)4
262657 466742561

so that u = (262657 466742561)432. Thus w is a 2-word integer, also called a double precision
integer or just a double.
We will also have to deal with negative values. They can be represented in two different ways.

o In signed-magnitude notation, the sign of an integer is independently coded by a bit,
byte, or word. For instance, 0 for positive values and 1, or b — 1 for negative ones. Thus
u = (s, (Un—1...ug)p) stands for up,_16™ 1 + -+ + ug or —(Up_16" " 4 -+ 4 ug)
depending on the value of s. Therefore 0 has two representations (O7 ... O)b) and say
(b —1,(0... O)b). As a consequence, the opposite of u is easily obtained since we only
need to modify s.

o In complement format, if the highest bit of the most significant word is 0 then the in-
teger (un—1...ug)p is nonnegative and must be understood as Up—10" L+ -+ wp.
Otherwise (uy,—1 ... ug)p is equal to —b™ + Up_ 10" 1 4 - 4 ug which is always neg-
ative. The representation (0. ..0); of 0 is unique and if u is nonzero, the opposite of u
is (Wp—1...T0)p + 1 wherew; = b — 1 — w; is the bitwise complement of u;. Comput-
ing the opposite is therefore more costly with this representation as each bit needs to be
changed. Note also that padding u with zeroes drastically changes the representation of
the opposite in this case.

Example 10.2 With a radix b equal to 4, 152 is represented by (0, (2120),) in signed-magnitude
format and —152 is trivially (3, (2120)4). In complement notation, 152 = (02120)4 and (31213),+
1 that is (31220), stands for —4% + 43 + 2 x 42 +2 x 4 = —152.

In base 2, complement notation is called two’s complement notation and the highest bit of an integer
codes its sign in both representations. Therefore the same sequence of bits corresponds to different
values. For instance (10011000)5 is equal to —24 in signed-magnitude format whereas it is equal
to —104 in two’s complement notation.
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10.1.3 Elementary operations

Computers have highly optimized built-in operations for single precision integers. Thus in the
sequel we will describe the arithmetic of multiprecision integers, assuming the existence of the
following low-level operations:

« Comparison of two singles returning a boolean 0 or 1. For instance, the equality = and
the natural ordering < of two integers can be directly determined.

« Bitwise complement of a single u, thatisu =b — 1 — u.

« Bitwise conjunction, disjunction and exclusive disjunction of the singles v and v, that is
respectively u A v, v V v and © XOR v.

« The right and left shifts of t bits of the single u, respectively denoted by u >> ¢ and
u << t, corresponding to |u/2" | and u2" mod b.

« Addition of two singles « and v giving a single w and a carry bit k equal to 0 or 1 so
that the correct result is u + v = kb + w.

 Subtraction of a single v from a single u, that is u — v, giving as a result a single w and
acarry k. If u > vthenw = u — v and k = 0, otherwise w = b+ u — v > 0 and
k = —1. The nonnegative quantity —k is sometimes called the borrow bit.

« Multiplication of two singles u and v giving a double w = u X v.

Division of a double u by a single v, when the quotient ¢ = |u/v] and the remainder

r = u mod v are both singles. This operation computes ¢ and r simultaneously.

Two remarks should be made on these basic operations. First the more complicated operations
such as multiplication and especially double by single division are not always available in modern
processors as integer instructions, but only as floating point ones. Second and more importantly
usual high-level languages such as C do not allow, at least in their basic versions, to access the carry
or borrow bit, or the high part of a multiply instruction, or to have simultaneously the quotient and
remainder of a double by single division. If high efficiency is desired it is thus necessary to bypass
these restrictions, either by choosing a C compiler and library allowing you to do these things, or to
implement them in explicit or inline assembly language programs.

In addition to the above, there are other useful basic operations such as extracting the top bit of a
word or counting the parity of the number of bits equal to 1, which do not exist as CPU instructions
and should be very carefully implemented. Note also that on some architectures, floating registers
provide faster operations than integer ones and should be used instead for multiprecision operations,
cf. [ZIM 2001] and [HAME™ 2003, §5.1.2].

In the following, we present several algorithms for addition, subtraction, multiplication, and di-
vision of multiprecision positive integers written in base b. Even if they work in general for every
radix, in practice b is almost always a power of 2, namely 28, 216, 232 or 264, However, for clarity,
algorithms will be often illustrated with b = 10. We start with the simplest operations, addition and
subtraction.

10.2 Addition and subtraction

Algorithm 10.3 is an obvious generalization of the schoolbook method for any radix b.
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Algorithm 10.3 Addition of nonnegative multiprecision integers

INPUT: Two n-word integers & = (un—1...u0)p and v = (Vn—1...00)s.
OUTPUT: The (n + 1)-word integer w = (wn, . .. wo)p such that w = u + v, wy, being 0 or 1.

1. k<0 [k is the carry]
2. fort=0 ton—1do

3 wi — (ui +vi + k) mod b [0 < w: <b]
4. k— |(ui +vi + k)/b] [k=0o0r1]
5 wn<—k

6. return (w,...wo)s

Example 10.4 Take b = 10, u = (9635)10 and v = (827)1¢ and let us compute u + v using
Algorithm 10.3. The algorithm proceeds as follows

| 7 wui +v; k | w4 W3 W2 W1 Wo ‘
0 12 O — — — — 2
1 5 1{— — — 6 2
2 14 0| — — 4 6 2
3 9 1| — — 4 6 2
— — 1 1 0 4 6 2

and the result is 9635 4 827 = 10462 as expected.

The subtraction algorithm is very similar to the addition algorithm. Indeed, a simple change of sign
in Algorithm 10.3 is enough to get u — v instead of u + v provided u > v.

Algorithm 10.5 Subtraction of nonnegative multiprecision integers

INPUT: Two n-word integers & = (tun—1...u0)p and v = (Vn—1 ... v0)p such that u > v.
OUTPUT: The n-word integer w = (wn—1 ... wo)p such that w = u — v.

1. k<0 [k is the carry]
2. for:=0 ton—1do

3. w; — (u; —v; + k) mod b [0 < w; <)
4 k— |(ui —vi +k)/b] [k =0o0r—1]
5. return (wp—1...wo)p [if k = —1thenu < v]

Remarks 10.6

(i) When working with a fixed number of words, the for loops of Algorithms 10.3 and 10.5
should be unrolled by hand for faster results. Also the computation of w; and k, in
Lines 3 and 4 should be implemented as a single operation.

(ii) For adding or subtracting integers of different lengths we must first pad the smallest
number with as many zeroes as necessary so that they are both of the same length. For
efficiency this padding is not done explicitly but implicitly.
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(iii) One can apply Algorithm 10.5 without checking if u > v. If K = —1 at the end, then
the output is related to the complement representation of the negative number v — v. To
obtain |u — v| one can repeat Algorithm 10.5 with u = (0...0); and v = w. Note that
the second subtraction is actually a computation of the complement of w and it is faster
implemented via a simplified version of the algorithm with the value v = 0 hardwired.

Example 10.7 Let us compute v — v when « is smaller than v. Take © = 2165 and v = 58646.

| T U — Vs k | w4 W3 W2 W1 wo ‘
0 -1 0l — — — — 9
1 2 -1 — — 1 9
2 -5 0| — — 5 1 9
3 —6 -11 0 3 5 1 9
4 -5 —-1] 4 3 5 1 9
2-nd execution with u = (00000)109 and v = w
0 -9 0] — — — — 1
1 -1 -1|— — — 8 1
2 -5 -1 — — 4 8 1
3 -3 -1|— 6 4 8 1
4 —4 —-1] 5 6 4 8 1

So |u — v| = 56481 and it can be deduced that u — v = —56481 since &k = —1 at the end of the
execution. The complement representation of —56481 is 943519.

10.3 Multiplication

Multiplication is a very important operation. Its optimization is crucial since it is the most time-
consuming part for a wide range of applications. For instance, the efficiency of division algorithms
depends to a large extent on the speed of the multiplication that is used. The complexity of a
multiplication algorithm is therefore an important parameter for a complete arithmetic system. In
the following, the number of elementary operations necessary to multiply two n-word integers will
be denoted by M(n). In the remainder, we shall often encounter situations where the best algorithm
to be used to perform a given task is chosen in a set and determined by parameters such as the size
of the arguments and the adopted computer architecture. This is the case for multiplication. We
describe in detail the schoolbook and the Karatsuba multiplication, which are the only interesting
ones for the range of integers we consider. However, many other algorithms exist. See [BER 2001a]
for a comprehensive presentation of multiplication methods.

10.3.1 Schoolbook multiplication

One starts with the simplest method known for at least four millennia.

Algorithm 10.8 Multiplication of positive multiprecision integers

INPUT: An m-word integer & = (Um—1 - . . ug)p and an n-word integer v = (Vp—1 ... v0)p.
OUTPUT: The (m + n)-word integer w = (Wm4n—1 - .. wo)p such that w = uw.

1. fori=0 ton—1 do w; — 0 [see the remark below]

2. fort:=0 ton—1 do
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3. kE—0 [k is the carry]
4. if vi =0 then Wy, — 0 [optional test]
5. else

6. for =0 to m —1 do

7. t— viu; + wirj +k [0<t<b?]
8. witj < t mod b [0 < wiy; < b
9. k «— [t/b] 0< k<]
10. Wnti — k

1. return (Wm4n—1...Wo0)p

Remarks 10.9
(i) In fact Algorithm 10.8 performs the following multiply and add operation
(Wntm—1---w0)p — (Un—1---u0)p X (Vm—1---v0)p + (Wp—1-..w0)p-
(i) Actually, the schoolbook method consists in computing the intermediate results uwv; be-

fore adding them. Here we multiply and add the terms simultaneously inside the j loop.
(iii) Checking if v; = 0 in Line 4 is useless unless b is small.

Example 10.10 Take u = (9712);0 and v = (526)19. So m = 4 and n = 3. Let us compute uv
with Algorithm 10.8. The table shows the relevant values after execution of Line 9.

S
=y

‘ 7 1 | ViUy Wi+4j t

J k ws w4 W3 w2 Wi Wo
0 0] 12 0 12 1] 0 0 0 0 0 0 2
1 6 0 7 0] 0 0 0 0 0 7 2
2| 42 0 42 41 0 0 0 0 2 7 2
3| 54 0 58 5| 0 0 5 8 2 7 2
1 0 7 11 1 0 0 5 8 2 1 2
1 2 2 5 0 0 0 5 8 5 1 2
2 14 8 22 210 0 5 2 5 1 2
3| 18 5 25 210 2 5 2 5 1 2
2 0 10 5 15 1 0 2 5 2 5 1 2
1 5 2 8 0 0 2 5 8 5 1 2
21 35 5 40 41 0 2 0 8 5 1 2
3| 45 2 51 5| 5 1 0 8 5 1 2

At the end of each 7 loop, is computed respectively 9712 x 6 = 58272,9712 x 20458272 = 252512,
and 9712 x 500 + 252512 = 5108512.

The number of elementary multiplications carried out by the schoolbook method is nm. Thus
M(n) = O(n?) for Algorithm 10.8.
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10.3.2 Karatsuba multiplication

In the mid-1950’s, Kolmogorov made the conjecture that the lower estimate of M(n) was of the
order of n?, whatever the method used. However, in 1960, one of his students, namely Karatsuba,
discovered a method in O(n'83), where lg is the logarithm to base 2. The method was later pub-
lished in [KAOF 1962]. The interesting genesis of the so-called Karatsuba method is explained in
[KAR 1995].

For the sake of clarity, set R = b, d = 2n and let u = (ug—1...uo)p and v = (vg—1...v0)p
be two d-word integers. The method relies on the following observation. Split both « and v in two,
namely the least and most significant parts, so that u = U1 R 4+ Uy and v = V1 R + V. Then one
can check that

w = U, V1 R? + ((Uo +U)(Vo+W) = Uiy — UOVO)R—i- UsVo.

One needs a priori four multiplications to compute uv but as a multiplication by R is just a shift, one
performs actually some additions and only three multiplications, which are U3 V4, (Uy + Uy) (Vo +
V1), and UyVp. Moreover, a recursive approach allows us to reduce the size of the operands until
they are sufficiently small so that the schoolbook multiplication is faster. In practice, this holds when
d becomes smaller than a threshold dj, depending essentially on the processor used. Granlund
performed tests with GMP on several architectures to determine the optimal value of dy. Results
spread from 8 up to more than 100 [GRA 2004, GMP].

Algorithm 10.11 Karatsuba multiplication of positive multiprecision integers

INPUT: An n-word integer « = (tn—1 . . . ug)s, an m-word integer v = (Vm—1 ... v0)s, the size
d = max{m,n}, and a threshold do.
OUTPUT: The (m + n)-word integer w = (Wm4n—1 - .. Wwo)p such that w = uw.

1. if d < do then return uv [use Algorithm 10.8]
2. p< |d/2] and q — [d/2]

3. Uy« (ug—1...u0)p and Vo < (vg—1...v0)p

4. Ui (Upgq—1-.-uq)p and Vi < (Vpgq—1...09)p [pad with Os if necessary|
5. Us+—Uy+U; and Vs — Vo + V1

6. compute recursively UpVy, U1Vi and UsV [corresponding sizes being g, p and ¢]
7. return U1 Vib* + ((UsVe — UrVi — UgVi))b? + Uo Vo

Remark 10.12 The number of elementary operations required by Algorithm 10.11 to multiply two
n-word integers shall be denoted by K(n). As K(n) < 3K(n/2) + ¢n/2 for some constant ¢, one
finds by induction that K(n) = O(n'83) ~ O(n'-58).

Example 10.13 Let us multiply v = 564986 and v = 1279871 by Algorithm 10.11 with dy = 4.
Soonehasd =7, ¢ =4 and R = 10*. Put

Uy = 56, Up = 4986
Vi=127, Vo =9871

With Algorithm 10.8, compute
UoVo = 49216806, U,V; =7112 and UsV, = 50409916
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to obtain

uv = T112 x 10® + (50409916 — 7112 — 49216806) x 10* + 49216806
= 723109196806.

Other multiplication algorithms, like Toom—Cook or Fast Fourier Transform methods [KNU 1997]
based on interpolation are asymptotically more efficient, but the gain occurs only for very large n,
out of the range of the sizes used nowadays for cryptosystems based on elliptic and hyperelliptic
curves.

10.3.3 Squaring

It seems simpler to square a number than to multiply two arbitrary integers. This feeling is supported
by the existence of a specific algorithm suggested by the formula

n—1 2 n—1
<Z uib1> = Z u?bm’ +2 Z uiujbzﬂ.
i=0 i=0 i<j

Thus a schoolbook squaring takes only (n? + n)/2 elementary multiplications (against n? for the
general algorithm).

Algorithm 10.14 Squaring of a positive multiprecision integer

INPUT: An n-word integer & = (tn—1 ... uo)s.
OUTPUT: The (2n)-word integer w = (wan—_1 . .. wo)p such that w = u?.

1. for ¢ =0 to 2n—1 do w; «+— 0

2. fort=0 ton—1 do

3 t e u? 4wy

4 wa; «— t mod b and k «— [t/b]

5 for j=¢4+1 ton—1 do

6. t — 2uiuj +witj + k

7 wiyj < t mod b and k «— [t/b]
8 Witn < k

9. return (w2,—1...wo)p

Remarks 10.15

(i) In the j loop, one has 0 < k < 2(b — 1). This implies that during the process, namely in
Wity  k an overflow could occur. However, at the end all the w;’s are single precision
integers.

(i) In practice, Algorithm 10.14 is about 20% faster than the standard multiplication u X .

(iii) Consider any commutative ring R of characteristic different from 2. In the unlikely
event that a squaring is more than twice as fast as a multiplication we can use 4uv =
(u + v)? — (u — v)? to get uv. Note that this identity can be used in practice, see
[CRPO 2001, exercise 9.6].
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Example 10.16 Let us follow the computation of the square of v = (769)19 by Algorithm 10.14.
Below are displayed the values of some relevant parameters after Lines 4 and 7 execute.

| 7 ] ‘ u? W24 2uiu]- Wi+j t k‘ | Ws wa w3 w2 w1 wo |
0 — |8 0 — — 81 8| 0 0 0 0 0 1
1| — — 108 0 116 11| 0 0 0 0 6 1
2 | - — 126 0 137 13| 0 0o 13 7 6 1
1 — |36 7 — — 43 410 0 13 3 6 1
2 | — — 84 13 1001 10| 0 10 1 3 6 1
2 — |49 10 — — 59 5| 5 9 1 3 6 1

It is also possible to write a specific squaring procedure inspired by Karatsuba’s idea. Indeed, one
can check that if u = U1 R + Uy and Ug; = Uy + Uy, as defined in Section 10.3.2, then

u? =UR* + (U2 -~ U —~USR+U?

so that intermediate steps only require squarings as well. The minimal word size d;, for which it is
faster to use, Karatsuba method against a naive approach, should be greater than the threshold d
used for Karatsuba multiplication in Algorithm 10.11. Set approximately d; = 2dy [GRA 2004].

10.4 Modular reduction

In many situations, only the remainder of a Euclidean division is required. In the following, one
describes two general methods to reduce a number modulo an integer /N. In practice N will often
be prime, and the corresponding reduction is an essential operation for prime field arithmetic. We
also consider moduli of special form and introduce a reduction method modulo several primes.

The obvious way to obtain «w mod N consists in dividing « by N and computing the remain-
der. The following methods allow more efficient execution. Sometimes an almost reduced element
which is not minimal is accepted as an intermediate result.

10.4.1 Barrett method

If w and N are both real numbers or formal series, there is another method to divide v by V. First,
compute the inverse of N to a sufficient precision and then multiply it by w. The inverse is often
computed with Newton method, i.e., the iteration

x—xz—xz(Nzx—1)

starting from an initial approximation zy. Such a precomputation of N ! proves useful if many
reductions modulo N are necessary.

There is a similar technique for integers. Let N be an n-word integer. We define the reciprocal
integer of N as R(N) = [b*" /N |. Now if  is a 2n-word integer we see that

b2n

I U TN
q= {NJ is also equal to { EEm J

which can be approximated by
|leeR],
q= bn+1
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In addition we have ¢ —2 < ¢ < ¢ and it can be shown that § = ¢ in about 90% of the cases whereas
g will be 2 in error in only 1% of the cases. This is the so-called Barrett method [BAR 1987]. See
[BoGO™ 1994] for further improvements.

For modular reduction this approximation is sufficient as &« = u — gV is in the same residue class
modulo NV as u and will be minimal if ¢ = ¢. If &« > NN, one needs at most 2 subtractions by N to
obtain the minimal representative.

When a lot of divisions are performed with a fixed divisor, for instance when computing in a finite
field, this approach is very efficient. Indeed R is precomputed and the quotient and remainder of a
Euclidean division by some power of b can be trivially determined.

Algorithm 10.17 Division-free modulo of positive multiprecision integers

INPUT: A 2n-word integer u = (u2n—1 ... uo)s» and the n-word integer N = (Np—1...No)p
with N, 1 # 0. The quantity R = |b*" /N | is precomputed.
OUTPUT: The n-word integer r = (rn—1 ...70)p such thatu = r (mod N).

1 G [[(u/o" D) R/" [4-2<q¢<q]

r1 < umod b" 1, ry «— (GN) mod b" 1 and 7 «—r; — 1o

if <0 then r«— r+b"t!

while r > N do r «—r — N

a > D

return r

Of course, Algorithm 10.17 can be trivially modified such that it computes the quotient g as well.
Even if R is precomputed and thus the performance is not crucial, we now present an algorithm
inspired by the Newton method, which computes it in an efficient way.

Algorithm 10.18 Reciprocation of positive multiprecision integers

INPUT: An n-word integer N = (Np—1...No)p.
OUTPUT: The (n + 2)-word integer R = |b°" /N |.

1. R<Db"
repeat
s—R
R« 2R— |N|R?/b"|/b" | [discrete Newton iteration]
until R < s
t—b" —NR
while t <0 do R«<— R—1and t —t+ N [performed at most twice]

© N o o &~ 0 DN

return R

Remarks 10.19

(i) The complexity of Algorithm 10.17 is at first glance equal to 2 multiplications of size
n. However, the n lowest words of the product |(u/b"~')| R will be discarded when
dividing by 5" " so that it is no use to compute them. In the same manner, only the n
lowest words of the product N are required. Therefore it can be shown that comput-
ing the remainder of a 2n-word u modulo the n-word N has asymptotically the same
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complexity as an n-word multiplication [MEOO™ 19g6, p. 604], cf. also Section 11.1.1.
(i) The number of iterations through Algorithm 10.18 is O (Iglg(N + 2)).

Example 10.20 Let © = 893994278 and N = 21987 and take b = 2. First, one computes R
with Algorithm 10.18. Since n = 15, set R = 215 and the successive values of R are indicated
below

s R t

— 32768 —
32768 43549 —
43549 48264 —
48264 48829 —
48829 48836 —
48836 48836 —

— 48836 —15308

— 48835 6679

Finally R is 48835. Then the determination of the quotient can be done with Algorithm 10.17.
Indeed n = 15, v = (1101010100100101 00010100100110)2 and we can see that [u/2" 1| =
(1101010100100101)5 = 54565. After computing the highest bits of the product of this last term
by R, another shift gives an approximation of the quotient § = 40659 whereas the exact value
of ¢ is 40660. Then one computes r; = 17702, ro = 58393 with another partial product and
r =1, — 1y = —40691. Since r < 0 one sets 7 = r + 2'6 = 24845 which is larger than IV so that
the remainder of © modulo N is finally equal to r — N = 2858.

10.4.2 Montgomery reduction

Montgomery introduced a clever way to represent elements of Z/NZ such that arithmetic and es-
pecially multiplication becomes easy [MON 1985]. It can be viewed as a generalization of Hensel
odd division for computing inverses of 2-adic numbers [HEN 1908]. In practice, N will often be a
prime number.

Definition 10.21 Let R be some integer greater than N and coprime with it. The Montgomery
representation of x € [0, N — 1] is [z] = (zR) mod N. The Montgomery reduction of u €
[0, RN — 1] is REDC(u) = (uR™!) mod N.

When R is a power of the radix b there is an efficient algorithm to perform the reduction of w.
Indeed let N’ = (—N~!) mod R and let k be the unique integer in [0, N — 1] such that k = uN’
(mod R). Then clearly (u + kN) is a multiple of R. Lett = (u + kN)/R. As N and R are
relatively prime, this implies that t = uR~! (mod N). Finally, 0 < v < RN by assumption and
it can be easily shown that 0 < ¢ < 2N so that t ort — N is equal to the desired result REDC(u).

The following algorithm makes use of these ideas, with some improvements, to handle multi-
precision integers.
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Algorithm 10.22 Montgomery reduction REDC of multiprecision integers

INPUT: An n-word integer N = (Np—1...No)s such that gcd(N,b) = 1, R = b", N' =
(=N"1) mod b and a 2n-word integer v = (u2n—1 ... uo)p < RN.

OUTPUT: The n-word integer t = (£n_1 ... %o)p such that t = REDC(u) = (uR™') mod N.

1. (tzn_1 ...to)b — ('LLQn_l ...UO)b

2. fori=0 ton—1do
3. k; «— (t;N') mod b
4, t—t+kiNb'
5. t—t/R
6. ift>Nthent—t—N
7. return ¢

Remarks 10.23

(i) Itis immediate that [z] = REDC((2R?) mod N) and that REDC([z]) = x forall 2 €
[0, N — 1]. The value R? mod N can also be precomputed.

(i) Algorithm 10.22 requires n? + n single precision multiplications to compute Mont-
gomery reduction.

(iii) Since N’ is precomputed once N is fixed, the way it is obtained is not crucial for the
overall performance of the method. However, Dussé and Kaliski designed a short proce-
dure to efficiently compute it [DUKA 1990]. One can use also an idea of Jebelean who
gave an efficient recursive method to compute an inverse modulo some power of 2%, see
Remark 10.40 (ii).

(iv) Classical reduction computes the remainder processing the digits of « from the left to
the right. Montgomery reduction is in one sense dual since it operates from the right to
the left.

(v) If w > RN then Algorithm 10.22 does not return ¢ = uR~! mod N butt = uR~!
(mod N). A divisibility criterion makes use of this remark, see Section 10.5.3.

Example 10.24 Let N = 2011 and b = 23 so that R = 8* = 4096. Let v = 8170821 =
(37126505)s. One can check that u < RN. A direct computation gives

N’ = 941 = (1655)s
ulN" = (37126505)s x (1655)s = (71222163241)s
E = (3241)s (mod R)
u+kN = (54140000)s
t (54140000)s/ R = (5414)s.

Ast > N, Montgomery reduction of uist — N = (5414)s — (3733)s = (1461)s = 817.
Now let us use Algorithm 10.22 instead. If we consider N = (3733)s = 2011 as a 4-word integer
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in base b = 23, one first sets N’ = (—N~!) mod 8 = 5 and the successive steps are

it K ki Nb t |
— = — — (37126505)s
05 1  (3733)s  (37132440)g
1|4 4 (175540)s  (37330200)s
2|2 2 (766600)s (40317000)g
317 3 (13621000)s (54140000)g
— = — — (5414)g

— = — — (1461)g

In [BOGO™ 1994] the authors give the following table that compares the complexities of classical,
Barrett, and Montgomery reduction for n-bit integers.

‘ Algorithm ‘ Classical Barrett  Montgomery ‘
Multiplications n(n +2.5) nn+4) nn+1)
Divisions n 0 0

Precomputations | Normalization of N |b*"/N|  Reduction
Restrictions None u<b™  u< N

For cryptographic applications the Montgomery method is reported to be faster than Barrett, see
tests in [BOGO™ 1994] and an interesting discussion of these two methods in [CRPO 2001].

10.4.3 Special moduli

Special moduli are usually considered only for arithmetic modulo primes p, i.e., finite field arith-
metic; however, as previously, the following algorithms depend by no means on this restriction.
Note that even if the overall modular arithmetic is performed more efficiently, one must be aware
that restricting the range of values for the modulus could also benefit a potential attacker.

The primes p we shall consider can be seen as generalizations of the concept of Mersenne primes,
that are prime numbers of the form p = 2¥ — 1. In practice, reduction modulo a Mersenne prime is
completely trivial since it requires only one field addition. Indeed, if 0 < = < p? then x can easily
be written as @ = x12% + 2o with ¢ and x; less than 25. As 28 = 1 (mod p), it follows that
x = 21 + 20 (mod p). For example, take p = 27 — 1 and = = 10905 = (10101010011001)s. One
has immediately

r = ((1010101); + (0011001);) (mod 127)
= (1101110)2 (mod 127)
110 mod 127.

The indexes k less than 1000 that give a Mersenne prime are 2,3,5,7,13,17,19, 31,61, 89, 107,
127, 521, and 607. In cryptography, they are used to define prime fields or extension fields. We
consider such optimal extension fields, [AVMI 2004], in Section 11.3. However, their lack in the
interval [2128,2520] which is of great interest for elliptic and hyperelliptic curve cryptography, led
to different kinds of generalizations. First Crandall introduced primes of the form 2* — ¢ with ¢ > 0
sufficiently small [CRA 19g2]. In fact, it is no more complicated to consider p = b* 4 ¢ with b some
power of 2 and |c| small. The fundamental relation is

z = ((2 mod bFy — ch/ka) (mod p).
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One deduces the following algorithm.

Algorithm 10.25 Fast reduction for special form moduli

INPUT: A positive integer « and a modulus p = b* + ¢ such that |¢| < b*~1 — 1.
OUTPUT: The positive residue = modulo p.

1. qo \_w/bkj ro — — qob®, r — 10,4 =10 and ¢ = ||
while ¢; > 0 do

Giv1 — aic’ /b*]

Tiz1 — qic — qiz1b”

re—r+ (=1l and i — i+ 1
while r > p do r«—r—p

while r <0 do r «—1r+p

© N o 0o » 0 N

return r

Remarks 10.26

(i) If z is a 2k-word integer in base b and if |¢| < b*/? — 1 then at most 3 multiplications
by ¢’ are required to find the final residue [MEOO™ 1996].

(i) It is also possible to consider a prime number p that divides N = b* + c. If the cofactor
N/p is sufficiently small, the computations can be done modulo N without any addi-
tional cost since multiplications are usually performed at a word level. At the end of the
whole process the result is reduced modulo p.

Example 10.27 Take b = 8, k = 6, ¢ = 3, and let us reduce x = 35061808269, equal to
(405166136215)g in base eight, modulo the prime number 85 + 3. Execution of Algorithm 10.25 is
as follows.

i ‘ 4 T r ‘
0 | (405166)s (136215)5  (136215)g
1 (1)s  (417542)s —(261325)s
2 )

)

(0)s (3)s —(261322)3
| = — (516461)s

Finally 171313 = (516461)s and one checks that z = 171313 (mod 8% + 3).

Another possible generalization of the definition of a Mersenne prime [SOL 1999a] is to consider
primes p of the form
p =27 L 2MEIW A L T 4]

where w = 16,32 or 64. These primes are often referred to as NIST primes [FipS 186-2]. The
fundamental reduction relation is

2n,kw = _|—_ 271;0,1111 _|—_ - —T— 2’”,111) _|—_1 (mOd p).
Used recursively, it allows us to reduce x < p2 written as

T = ‘,L,an712(2nk71)w F xan722(2nk72)w Foo _T_x12w T 0.
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For example, the field F,, where p = 2'9% — 264 — 1 is recommended by standards for elliptic curve
cryptography. If x < p? then x can be written

T = $52320 + 1‘42256 T .1332192 T $22128 4 1‘1264 + 10

and using
9320 — 9192 4 9128 (mod p)
2256 = 2128 _|_ 264 (mod p)
2192 = 26 11 (mod p)

one obtains

= 24270 4 (25 4 23)2'9 + (25 + 22)2'28 + 212% 4 2 (mod p)
(w5 + 23)2'% + (25 + 24 + 22)2"%° + (24 + 21)2 + 20 (mod p)
(x5 + x4 + 22)2"28 + (25 + 24 + 23 + 21)2% + (25 + 23 + 20) (mod p).

10.4.4 Reduction modulo several primes

Reducing x simultaneously modulo several primes p1, . . ., p;, can be done [MOBO 1972] using a re-
mainder tree in time n(lg n)2+°(1) where 7 is the total number of bits in x, p1, . . . , px. For instance,
if one wants to reduce  modulo py, p2, p3 and py, the idea is first to compute z mod pipapsp4,
second reduce the result modulo p1p2, modulo p3p4, and finally modulo each p;, according to the
following diagram

x mod p1pap3pa

x mod pips x mod p3p4
x mod pq x mod po x mod p3 x mod py

In [BER 2004b], Bernstein introduces the scaled remainder tree where computations are done mod-
ulo 1. Indeed modular reductions are replaced by real divisions, which are in turn replaced by
multiprecision multiplications. This gives an algorithm with the same asymptotical complexity
n(lgn)?T°M) but with a smaller o(1). Note that similar techniques also apply to polynomials.

10.5 Division

Let us divide u by v, that is compute the quotient ¢ = |u/v] and the remainder r = « mod v,
where v and v are positive integers. Note that when only the remainder is needed, more efficient
methods are discussed in Section 10.4.

Before addressing the general case, let us see what can be done when v has special properties,
and first of all when v = 2.

In many subsequent algorithms, one has to compute the even part and the odd part of u, that is
respectively the biggest power 2¥ that divides v and u/2". If the processor has no specific instruction
to count the number of low zero bits, one can compute u A (u + 1) to find the lowest bit of « that
is nonzero. However, the simplest method, in this case, is certainly to shift u to the right as many
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times as necessary. This process can be sped up with some precomputations, as suggested by the
following piece of code for 32-bits architecture. The i-th entry in array 7" contains the maximal
exponent r < 5 such that 2" divides .

T —[5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0, 1, 0]
t—uA3l

u — u>>Ti]

while uA1=0do u«— u>>1and T[i] « T[i] +1

Eal

At the end, the even part is 271 and v holds the odd part. Note that the instructions in the while
loop are performed only in case i = 0 when 2% divides u with k > 5.

Another simple case of interest is when v is a single precision integer. The next algorithm will
often be used in the sequel, at least implicitly.

Algorithm 10.28 Short division of positive multiprecision integers

INPUT: An n-word integer « = (un—1 ... o), and a nonzero single v = (v ).
OUTPUT: The n-word integer ¢ = (¢n—1 . .. qo)s and the single » = (rq)p such that u = vg+r.

1. rg«—0 [ro is the remainder]
2. for i< n—1 downto O do

3 t — (rob+u;)

4. qi — | (rob+u;i)/vo| and 1o < t mod vo [gn—1 may be 0]
5. return (gq,r)

Example 10.29 Let us divide (8789);9 by 7 using Algorithm 10.28.

w

oo
ot Ot N
= W W =

Atthe end, ¢ = (1255)1¢ and 79 = 4 as expected since 8789 = 7 x 1255 + 4.

10.5.1 Schoolbook division

The next algorithm due to Knuth [KNU 1997] is a refined version of the customary method taught
at school for performing division of multidigit numbers.

Algorithm 10.30 Schoolbook division of positive multiprecision integers

INPUT: An (m + n)-word integer u = (Um4n—1-...uo), and an mn-word integer
v = (Un—1...00)p Where v,_1 >0andn > 1.

OUTPUT: The (m+1)-word integer ¢ = (¢m - - - go)» and the n-word integer r = (rn—1...70)s
such that u = vq + r.

1. Umgn < 0 and d«— 1
2. while v,_1 < b/2 do

3. v 20, u < 2u and d «— 2d [normalization]
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4. for i =m downto O do

5. ¢ < min(|(witnb + Uitn—1)/vn-1],b— 1)

6. while §(vn—1b+vn_2) > (Uitnb® + Uitn_1b + Uiyn_2) doO

7. qg—q—1

8. (Wi« wi)p — (Uign -« ui)p — G(Un—1...00)p

9. if (Witn...ui)p <O then [occurs with probability 2/b]
10. G—q¢—1

11. (Wigm - )b — (Wign - U)o + (0Vp—1...00)p

12. qi — ¢

18. r«—u/d [unnormalization]

14.  return (q,r)

Remarks 10.31

(i) The for loop computes ¢; = L(an cootg)p/(Up—1 .. -Uo)bJ- These steps are similar to
the Line 4 of Algorithm 10.28. This determination relies on a guess, i.e., the approxi-
mation of ¢; by ¢, Line 5. One always has ¢; < ¢.

(ii) At the beginning, u and v are multiplied by d, a suitable power of 2, such that v,,_; >
b/2. This normalization is particularly well suited when the radix is a power of 2. It
ensures that § < ¢g; + 2. Thus the statement ¢ < ¢ — 1 in Line 7 is encountered at most
twice. The normalization does not change the quotient whereas the remainder must be
divided by d at the end.

Example 10.32 Let us divide (115923)19 by (344)10. So n = 3 and m = 3. Because of the
normalization, one sets u = (231846)10, v = (688)10 and d = 2.

| i E 2 1 0
(Ui+nb + ui+n,1) 2 23 25 48
G = min(|[ (witnb+ vign—1)/vn—1],b—1) 0 3 4 8
Uit nb? + Uis 1D+ Ujin_2 23 231 254 480
G(vn—1b+vp—2) 0 3 X 68 =204 4 X 68 =272 8 X 68 = 544
g in Line 8 0 3 3 7
(Wim - wi)p 231 2318 2544 4806
G(vp—1...v0)p 0 3 X 688 = 2064 3 x 688 = 2064 7 x 688 = 4816
@ 0 3 3 6
(Wiqm - - -u;)p in Line 12 (0231)10 (0254)10 (0480)10 (0678)10

Finally 231846 = 688 x 336 4 678 so that 115923 = 344 x 336 + 339.
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Remark 10.33 Another normalization allows us to do less elementary divisions. Following an idea
of Quisquater [QUI 1990, QUI 1992], let v’ be the smallest multiple of v bigger than b™ 1. Let
¢ = u/v" and ¥’ = v mod v’. The approximation of the digits of ¢’ is now trivial since the first two
digits of v’ are (10), but as above, some corrections might be necessary. When ¢’ is determined we
easily deduce g and r from ¢’ and 1.

When several divisions by the same v are carried out this technique is even more interesting as
we compute v' only once. Therefore this idea is useful to speed up prime field reductions; see
Section 11.1.2.a.

Example 10.34 Let u = (797598)10 and v = (983)10; we have v’ = 11v = (10813)1. We obtain
¢y = 7and u — 700" = 40688. Then we should set ¢(, = 4 but this approximation is one in excess
so that ¢), = 3 and u — 73v" = 8249. So

u=¢qv +7 with ¢ =73 and ' = 8249.
Now ' = 8v + 385 so that
w= (11 x 73 + 8)v + 385 = 811v + 385.

We perform only 2 true divisions instead of n. When b is larger the saving is noticeable [ZIM 2001].

Another simplification is possible since we can suppose that:

the length of w is 2n, the length of v is n, v is normalized, i.e., b/2 < v,—1 < b
and q is of length n, i.e., u < b"v. (10.1)

Indeed, if w has length 2n and u > b™wv, it is sufficient to do u «— u — 0" v to get u < b"v, v being
normalized. Now suppose that u is not of length 2n but n 4+ m. Two possibilities arise.

« When m > n, one can divide (tpqm—1 ... Um—n)p of length 2n by (v,—1...00)p to
get the first digits ¢* of ¢ and set u « u — ¢*vb* (where k is a suitable power) until the
length of w is less than 2n.

o If m < nonedivides (ty4m—1 - - - Upn—m)p Of length 2m by (v,,—1 . . . V—p )p of length
m. The result ¢* is an approximation by excess of q. We easily derive ¢ from ¢* if
u—q'v <0.

In the following we shall often assume (10.1).

10.5.2 Recursive division

In Algorithm 10.30 the next digit of the quotient is determined by the division of the 3-word number
Uit nb? + Uiyn_1b+ Uiyn_o by the double precision integer v, _1b + v,,_o. But this is actually
performed by means of a division of the double precision integer ;4,0 + u;4,—1 by the single one
vp—1 and some possible corrections. Burnikel and Ziegler [BUZI 1998] apply this idea recursively
to blocks of digits. Here we present a slightly different version [HAQU™ 2002] and introduce the
concatenation of Uy of length n and Uy i.e., U1b™ + Uy denoted by (U || Up)s.

This method is sometimes referred to as the Karatsuba division.
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Algorithm 10.35 Recursive division of positive multiprecision integers

INPUT: A 2n-word © = (u2n—1 ... Uo)p, an n-word v = (vn—1...v0)s asin (10.1). The size n
is a parameter whereas the threshold n is fixed.
OUTPUT: The n-word integers ¢ = (gn—1...qo0)s andr = (rn—1...70)s such thatu = vg+r.

e

if n < no then determine ¢ and r with Algorithm 10.30

2. p«<[n/2] and t «— |[n/2]

3. U« (uzn_1...u2)p and Uy — (uge_1...u0)s [u = (U1 Uo)s]
4. Vi< (vp—1...v¢)p and Vo «— (Vt—1...v0)p [v= (V1] Vo)s]
5. Q1+ (gn-1-.-qt)p and Qo + (gt—1...q0)» [g = (Q1] Qo)b]
6. if U1 <b”V1 then

7. (Q1,7) < (|U1/V1],Ur mod V1)

8. r «— Uy + b*'r — b'VoQ1 [7“ — (r||Uo)p — tile}
9. else

10. Q1+ b —1 and 7« u — b"v + bv [r—u—bv(®b —1)]
11. while 7 <0 do Qi «— Q1 —1 and r «— r + b'w

12. writer = Ro + b’ Ry and V = V§ + b*V/

13. if Ry < b'V{ then

14. (Qo, R1) < ([ R1/V/], R1 mod VY)

15. else Qo b' — 1 and 7« r — b'V{ + 6" *(([v/b" ")) mod b")

16. 71— ViQo

17. while r <0 do g« qg—1 and r«—r+wv

18.  return (q,r)

Remarks 10.36

(i) The computations Lines 7 and 14 are obtained in a recursive way. In the first case, one
calls Algorithm 10.35 with parameters Uy, V3, p, while they are Ry, V{ and t in the
second one.

(i) For optimal results, the threshold ng should be set after several tests.

(iii) The complexity of Algorithm 10.35 is 2 K(n) on average.

(iv) It is possible to modify Algorithm 10.35 to compute only the quotient. However this
strategy might fail (with a probability less than 1/b) and the algorithm returns a quantity
bigger than ¢ that can be corrected very easily in most of the cases. The complexity
is then 1.5 K(n) on average and only 2K(n) in bad cases [HAQU™ 2002] instead of
2.5 K(n) with the original algorithm of Burnikel and Ziegler.

(v) There is an asymptotically faster method, based on the recursive middle product in-
troduced in [HAQU™ 2004]. The complexity to divide 2n-word by n-word integers is
about 1.2 K(n) in this case. However, it is not relevant for sizes used in curve-based
cryptography.

Example 10.37 Set np = 2 and let us divide u = (6541237201)10 by v = (65427)10 using
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Algorithm 10.35. The intermediate steps are as follows:

e N = 5,]3 = 3,t = 2, U1 = (654123)10, U() = (7201)10, V1 = (654)10 and V() = (27)10.

e« U; > 1000 x V150 Q1 =999 and r = u — 999 x 100 x v = 5079 901.

. R1 = (5079)10, Ro = (901)10, V1/ = (65)10 and VE)/ = (427)10.

« Ry < 100 x 65 so we get Qg = |[5079/65] = 78 and Ry = 5079 mod 65 = 9 by a
recursive call which reduces in this case to a schoolbook division.

. Finally q = (Ql || QO)IO = 99978, r = (Rl || RO)lO = (9 || 901)10 = 9901 and r —
V{Qo = —23405 < 0.

Thus we set r = r +v = 42022 and ¢ = 99977 and terminate the algorithm. It is easy to check that
these are the correct values.

10.5.3 Exact division

If u and v are positive numbers, then it is possible to test if v divides u without exactly computing
the remainder v mod v. This is helpful as there are specialized algorithms for exact division.

Indeed, first remark that if v | w, the largest power of 2 dividing « must be bigger than the one of
v. So we can assume without loss of generality that v is odd. The idea is now to use Montgomery
reduction REDC modulo v, see Algorithm 10.22. More precisely, set ¢ «— u and repeat ¢ «+— REDC(t)
until ¢ < v. Atthe end, t = u/2* (mod v) for some k. Obviously, v divides u if and only if ¢ is
zZero.

Example 10.38 Let v be the 2-word integer (573160 4090964624 ),32 and u be the 4-word integer
(2242222213 1590893749 2725169084 656228000)432. As v is not odd, one computes the even
parts of u and v, i.e., respectively 2° and 2* and one continues the computations with 1 « u /2%
and v « v/2%, which is now odd. With the notations of Section 10.4.2, let R = 254 so that ¢ =
REDC(u) = (2242205646 805464192)532. As t > v, one applies another Montgomery reduction
which returns 0. This shows that w = 0 (mod v).

Now let us introduce Jebelean method [JEB 1993a] to compute the quotient |u/v | when it is known
thatw = 0 (mod v) ie., [u/v] = u/v.

Once again it is assumed here that the base b is a power of 2. The proposed algorithm relies on
the following observation. Let us write u = Ub + ug, v = Vb + vy and ¢ = Qb + qo, where
0 < up, vo, qo < b. So u = vg implies that Ub + ug = vQb+ Vqob + voqo. Thus ug = vgqp mod b
and u —vqo = vQb. If ged(vg, b) = 1 this shows that gy = (ugvy ') mod b and the same arguments
work for (v — vqp)/b = vQ allowing us to find ¢; and so on. Moreover only the (m + 1) lowest

digits of u take part in the computation of u — vgyg. So we can perform this subtraction modulo
bt

Algorithm 10.39 Exact division of positive multiprecision integers in base b = 2!

INPUT: An (m + n)-word integer © = (Um4n—1 - - . uo)p and a n-word divisor v of u of the form
v = (Un71 e ’UO)b-
OUTPUT: The (m + 1)-word integer ¢ = (gm - - - qo)» Such that u = vq.

1. while 2 |v do v «—v/2 and u «— u/2

2. t« vy " modb [see Remark 10.40 (ii)]
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for : =0 to m do
Gi < (uot) mod b
u — ((u—vg;) mod b™ %) /b

S

return ¢

Remarks 10.40

(i) At the end of the first line ged(vg, 2) = 1. Since b = 2° this implies that gcd(vg, b) = 1.

(if) The quantity v, ! mod b is computed once but is used at each iteration. It can be ob-
tained in a very efficient way. Indeed, if t = (¢=!) mod b then a~! = (2t — at?) mod
b2. This trick used a couple of times after a search in a table of inverses modulo 28 gives
good results [JEB 1993a].

(iii) A slightly different procedure allows us to compute the quotient | u/v | when the remain-
der 7 = u mod v is known. Obviously it is enough to replace the last two statements in
the for loop by g; — ((uo — r3)t) mod band u « ((u — r; — vg;) mod b™ =) /b,

(iv) Krandick and Jebelean [KRJE 1996] designed a method to compute the highest digits
of the quotient without computing the remainder. Their method is well suited to com-
pute the first half of the digits of an exact division, the other half being computed by
Algorithm 10.39.

Example 10.41 One checks that v = (238019);¢ divides u = (322413634849)19. One has n =
m = 6. Let us find the quotient ¢ = u/v with Algorithm 10.39. The inverse of 9 modulo 10 is
t = 9. Next table shows the progress of Algorithm 10.39 along the execution of the for loop.

\ i o 1 2 3 4 5 6 |
qi = (uot) mod b 1 7 5 4 5 3 1
(u — vg;) mod b=t 1 3396830 673550 77260 55650 15470 87490 70730
U 339683 67355 7726 5565 1547 8749 7073

Finally ¢ = (1354571)1.

10.6 Greatest common divisor

The following algorithms are described in [COH 2000, LER 1997]. We introduce Euclid, Lehmer
and binary methods and give in fact the extended versions of these variants. Indeed, given two inte-
gers x and N, the algorithms given below not only compute d = ged(x, V) but also the integers u
and v such that xu + Nv = d. Usually, this is the preferred method to compute the inverse of an el-
ementin (Z/NZ)*, see also Section 11.1.3 for specific methods to compute such a modular inverse.
Another very important application is linked to the Chinese remainder theorem, cf. Corollary 2.24
and Algorithm 10.52 below.
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10.6.1 Euclid extended gcd

Algorithm 10.42 Euclid extended gcd of positive integers

INPUT: Two positive integers x and /N such that z < N.
OUTPUT: Integers (u, v, d) such that zu + Nv = d with d = ged(z, N).

1. A« N,B+ z,Us <0 and U «— 1

2.  repeat
3. q— |A/B]
4 A 0 1 A
' B 1 —q| |B
UA 0 1 UA
5. —
Up 1 —q| |Us

6. until B=0
7. d— Au+—Ua and v < (d — zu)/N

8. return (u,v,d)

Remarks 10.43

(i) If we introduce the variables V4 and Vg such that

VA] lo 1 VA]

—

Vi 1 —q| |VB
we see that zU4 + NV, and 2Up + NVp are constantly equal to respectively A and
B during the execution of the algorithm. If the inversion routine is not implemented
one can simply add these two variables and update them during each round to avoid the
division in Line 7.

(if) Throughout Algorithm 10.42 |U4|, |Ug| (resp. |Val,|Vz|) are less than or equal to N/A
(resp. x/A).

(iii) The number of necessary steps is O(lg N) (see [COH 2000] for more precise results).
As a consequence, the complexity of Algorithm 10.42 is O(lg2 N) when it is carefully
implemented.

VA=1,VB=O and

Example 10.44 Let us compute 2~ mod N for z = 45 and N = 127.

‘ q | Ua Va A xUA—FNVA‘ Up Ve B l‘UB-‘rNVB‘

— 0 1 127 127 1 0 45 45
2 1 0 45 45 -2 1 37 37
1 -2 1 37 37 3 -1 8 8
4 3 -1 8 8 —14 5 5 5
1|14 5 5 5 17 -6 3 3
1 17 -6 3 3 —-31 11 2 2
1|31 1 2 2 48 —17 1 1
2 48 —-17 1 1 —127 45 0 0

S0 48x — 17N = 1 which implies that 27! mod N = 48.



192 Ch. 10 Integer Arithmetic

Most of the running time is taken by computing the quotient ¢ < | A/B]. Moreover, in 41% of
the cases one obtains ¢ = 1, which motivates choosing this value in all cases on the cost of more
rounds, as is the case for the binary gcd algorithm, cf. Section 10.6.3. Note that Gordon proposed
to use an approximation of the quotient by a suitable power of 2 [GOR 1989]. When x and n are
multiprecision integers a variant due to Lehmer also avoids a full determination of the quotient.

10.6.2 Lehmer extended gcd

Lehmer’s idea [LEH 1938] is to approximate | A/B| with the most significants digits of A and B
and to update them when necessary in computing the matrix product

(10.2)

B

which performs several cumulated steps. The single precision integers «, o, 3 and 3’ are computed
by a subalgorithm successively improved by Collins [COL 1980], Jebelean [JEB 1993b] and Lercier
[LER 1997]. Here we state the skeleton of this algorithm, the improvements differ in the way Line
3 is performed.

Algorithm 10.45 Lehmer extended gcd of multiprecision positive integers

INPUT: Two m-word multiprecision positive integers 2 and N in base b = 2¢ such that z < N.
OUTPUT: Integers (u, v, d) such that zu + Nv = d with d = ged(x, N).

1. A~ N,B+ x,Usy «+— 0 and U «— 1
2. while |BJ2 > ¢ do

3. compute o, o, 3 and 3’ by subalgorithm 10.46 with arguments A and B
A a pBl|A
4. —
B o p||B
Ua a B |Ua
5. — , ,
Ug o A |Us

6. compute (u, v, d) by Algorithm 10.42 with arguments A and B
7. u<«—ulUa+ovUp, v (d—zu)/N

8. return (u,v,d)

From A and B, i.e., the ¢ most significants bits of A and B expressed in base b = 2¢. Lehmer
derives two approximated quotients. Whenever they differ, A and B must be updated as in (10.2).
Collins and Jebelean have an equivalent condition to determine «, o/, 8, and 3 with only one
quotient. Now experiments show that if the size of A and B is about b then the order of magnitude
of av, o 3, 3'is less than v/b. In order to increase the size of these coefficients Lercier [LER 1997]
mixes single and double precision approximations. We present this last improvement now.
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Sub-algorithm 10.46 Partial gcd of positive multiprecision integers in base b = 2¢

INPUT: Two positive integers A and B.
OUTPUT: Integers o, o/, 3 and 3’ as above.

1.

10.
11.
12.
13.

14.

15.

16.

17.

18.

19.
20.
21.
22.
23.
24.
25.
26.
27.
28.

© ©® N o 0o >

A \‘WMJ A « the £ most significants bits of A]

) B o
B — {WJ [B might be O]

a+—1,8+0,a 0,3 «—landT <0
if B+#0 then ¢ — |A/B| and T — A mod B
if 7> 2% then
while true do
¢ — |B/T| and T' — Bmod T
if 7' < 2°? then break
A<—B€,B<—T
T—a—qd,a«—a and o/ «— T
T—p—qf,8—0 and g/ T
T+ T and ¢« ¢
if 3=0then o — 0,8« 1,0 — 1,8 «— —|A/B] and return (o, f,0a/,3')
i

WJ [A «— the 2¢ most significants bits of A]

A B
B {Qmax(\Ab—ze,o)J

o

A— {W A — the £ most significants bits of /1]
2max —k£, i

: B
B(_\‘W and T« 0

if B#0 then ¢« |A/B| and T «— Amod B
if 7> 22 then
while true do

¢ — |B/T| and T' — Bmod T
if 7/ < 22 then return (o, 3,0, ')
A B, BT
T—a—qd,a0a—a and o/ T
T—p-qf B p and ' T
T+ T and ¢« ¢

return (o, 3,0, 3")
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Remark 10.47 With Lehmer’s original algorithm [COH 2000] A and B decrease by 13 bits (respec-
tively 29 bits) on average for each iteration when b = 232 (respectively 264). With Sub-algorithm
10.46 the gain is of 22 bits (respectively 53 bits) on average.

Example 10.48 With b = 216 let us compute the extended gcd of N = 26498041357 and x =
8378459450. With the initial algorithm of Lehmer, the intermediate steps are

{a/ 5 } A B Ua Ug u v d
(e}

— 26498041357 8378459450 0 1 — — —

1 -3
1362663007 202481408 -3 19 — — —

6 19

[—4 27
16345988 5668885 525 ~1439 — — —

11 —74]

[—9 26 ]
277118 106431  —42139 79436 — — —

17 —a9]

S
20094 1987 761905 —1243363 — — —

|5 —13]
— — — — — 10055119245 —3179344757 1

a @
, ﬂ’ A B UA UB u v d
(63
— 26498041357 8378459450 0 1 — — _
—43 136
54706849 38360861 136 —389 — — _
123 —389
115 —164
106431 64256 79436 —201011 — — —
—291 415
— — — — — 10055119245  —3179344757 1

10.6.3 Binary extended gcd

To compute the gcd of two integers A and B one can also repeatedly apply the following rules:

« if A and B are both even then ged(A4, B) = 2gcd(A/2, B/2)

o if Aisevenand B is odd then gcd(A, B) = ged(A/2, B)

« if A and B are both odd then |A — B| is even so that gcd (A4, B) = ged(A, |A — B|/2).
In addition |A — B| < max{A, B}.

Since A and B are not necessarily of the same order of magnitude, it is wise to reduce the size of the
operands once. So only one division with remainder is required by the following algorithm, which
is therefore especially interesting in computing the gcd of multiprecision integers.
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Algorithm 10.49 Extended binary gcd of positive integers

INPUT: Two positive integers x and /N such that z < N.
OUTPUT: Integers (u, v, d) such that zu + Nv = d with d = ged(z, N).

1. q<— |[N/z|, T — Nmodz, N — 2z and z «— T [reduce size once]
2. ifx=0then u—0,v < 1,d«— N and return (u,v,d)

3. k<« O0and f<0 [f is aflag]
4. while N =0 (mod 2) and z =0 (mod 2) do

5. k—k+1 N« N/2 and © — z/2

6. if =0 (mod 2) then

7. T—z,x2— N,N—Tand f—1 [swap x and N]
8. Up+—1,A«— N,B«—z and v «— =z

9. if N=1 (mod 2) then Uy + 0 and ' « —x

10. elseUs « (1+2)/2 and ' < n/2

11.  while ¢ # 0 do

12. if ¢ >0 then Ug — Us and A« t'else B—xz— U, and v/ — —t’

13. Us—Up—Band t' — A—1

14. if Ux <0 then Ug «— Us + 2

15. while ' =0 (mod 2) and ¢’ # 0

16. t—t')2

17. if Ua =0 (mod 2) then Uy «— Ua/2else Uy — (Ua + x)/2

18. u <« Up,v « (A—zu)/N and d — 2" A

19. if f=1then T «— u,u«— v and v« T

20. u <+ u-—wvq

21.  return (u,v,d)

We shall not describe here asymptotically faster methods such as the generalized binary algorithms
[LER 1997], since they become more efficient for integers larger than 26°°. This size is completely
out of the range for elliptic and hyperelliptic cryptosystems.

Remarks 10.50

(i)

(ii)

On average Euclidean quotients in Algorithm 10.42 are small. It is even possible to
show that ¢ = 1 is the most probable case. The corresponding probability, defined in a
suitable sense, is 0.41504 ..., see [COH 2000]. This justifies performing subtractions
instead of divisions even if the number of steps needed is greater.

Traditionally, to compute (k/x) mod N one performs the multiplication of &k by the

inverse of © whereas a direct computation is possible. Indeed it suffices to set Up «— k
instead of Up «— 1, in Lines 1, 1 and 8 of Algorithms 10.42, 10.45, and 10.49.

Example 10.51 Let us compute the extended gcd of x = 67608 and N = 830616 with Algo-
rithm 10.49.
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In Line 1, one performs a classical reduction to obtain variables of comparable size. For these
particular values, this step saves many computations since we have ¢ = | N/xz| = 12. Then in the
while loop starting Line 4, we remove the highest power of 2 dividing the gcd, thatis & = 3. After
Line 7, x and N are respectively equal to 2415 and 8451.

The next table contains the values of the relevant parameters A, B, U4, Up, t' and v’ before the
execution of Line 12.

A B Ua Usp ' v
8451 2415 0 1 —2415 2415
8451 2415 604 1 1509 2415
1509 2415 302 604  —453 2415

1509 2113 783 604 33 453
33 2113 875 783  —105 453
33 1540 811 783 -9 105
33 1604 803 783 3 9

3 1604 807 803 -3 9

We set u = 803, v = (A — Nu)/z = —2810 and d = 2*A = 24. Finally, the value of w is
corrected to take into account the initial reduction, i.e., u = u — vqg = 34523. We easily check that
uxr +vN = 24.

10.6.4 Chinese remainder theorem

Suppose one wants to find a solution to the system

x = z1 (mod nq)
x = z2 (mod na)
x = w (mod nyg)

where the n;’s are pairwise coprime integers and the x;’s are fixed integers. Corollary 2.24 ensures
that there is a unique solution modulo N = njng ...ny and in fact, such a solution is easy to find.
Let N; = N/n;. Since the n;’s are pairwise coprime one has gcd(N;,n;) = 1 for all 4, and an
extended ged computation gives a; such that a; N; = 1 (mod n;). Clearly, a solution is then given
by

x = a1 N1x1 + aaNoxo + - - - + ap Npay.
This is the idea behind the following algorithm, which performs more efficiently and computes z

inductively. At each step, given an integer x such that z = x; (mod n;) for all ¢+ < 7, it finds x
satisfying = x; (mod n;) forall i < j + 1.

Algorithm 10.52 Chinese remainder computation

INPUT: Pairwise coprime integers n1, ..., ny and integers z; for 1 < i < k.
OUTPUT: An integer x such that z = x; (mod n;), forall 1 < i < k.

1. N+« n; and = « 21
2. fori=2 to k do

3. compute v and v such that un; + vN =1 [use an extended gcd algorithm]



§ 10.7 Square root

197

T — un;xr +vNz;

N<—NTL~;

return =

4.
5.
6. x «— xz mod N
7.

Remarks 10.53

(i) Algorithm 10.52 can be generalized in a straightforward way to the polynomial ring
K[X] where K is a field.

(i) Another variant due to Garner [GAR 1959] involves precomputations and is well suited
to solve different systems with fixed n;’s; see for instance [MEOQO™ 1996]. This is
especially useful for residue number system arithmetic where computations modulo N
are in fact performed modulo several primes p; fitting in a word and such that [, p; >

N2, See [BLSE™ 1999] for instance.

Example 10.54 Let us solve the system

1l
© Ot = N =

I

The moduli 3,5,7,11, and 13 prime and thus they are pairwise coprime. Here are the values of

relevant parameters before we enter the for loop and at the end of it, Line 6.

‘ 7 ‘ n; T N u ) x | x mod n;
1] 3 1 3 — — 1 1

2 2 15 -1 2 7 2

3| 7 4 105 -2 1 67 4
4111 5 1155 —=19 2 907 5
5113 9 15015 —533 6 8992 9

10.7 Square root

First let us describe a simple method to compute the integer square root of a positive number u, that

isv=[u].

10.7.1 Integer square root

Newton iteration is a powerful tool to find solutions of the equation f(x) = 0. Under suitable
conditions, the process x;+1 « x; — f(x;)/f'(x;) starting from an appropriate approximation,
converges quadratically to a root of f. Using this method with f(x) = 22 — u leads to the iteration

Tit1 < (z; +u/x;)/2 to compute /u. Its discrete version is the basis of Algorithm 10.55.
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Algorithm 10.55 Integer square root

INPUT: A positive n-word integer w.
OUTPUT: The positive integer v such that v = |[/u].

1t 9lgu/2] [initial approximation]
repeat

v—t

2
3
4. t— [(v+ [u/v])/2] [discrete Newton iteration]
5. until t =0

6

return v

Remarks 10.56

(i) If w fits in a word, it is more efficient to perform a binary search, that is guess the bits of
v one by one [BER 1998].
(i) Algorithm 10.55 needs O(lg lg ) iterations to terminate.
(iii) Any integer ¢ > /u can be chosen as an initial approximation, but ¢ should be as close
as possible to |y/u| for efficiency reasons. To ensure a fast convergence, one possibility
is to compute an approximation /u, using for instance the most significant word of w.
(iv) The working precision should be increased dynamically as the computation progresses.
(v) If Lines 4 and 5 of Algorithm 10.55 are replaced by
4, t— (v+u/v)/2
5 until t —v<e
then an approximation up to the precision ¢ of the real y/u is returned instead.

Example 10.57 Take (393419390 735536755)9s2 and let us find v = | /u] with Algorithm 10.55.
Since u is a 61-bit integer, one takes 23! as an initial approximation. Then the successive values
of t are 1467161214, 1309428509, 1299928331, 1299893617, 1299893616, and again 1299893616
which is the expected result. If the initial value is set to ¢ « [\/ 393419390] x 216 instead, only
two iterations are required to get the result.

At present, let us examine a related problem.

10.7.2 Perfect square detection

To decide if an integer w is a perfect square or not, one possibility is to compute its integer square
root v = |/u], with the algorithm above, and to compare v? to u. However, if u is not a square
modulo some integer, it is clear that u cannot be a perfect square. Now, if u is a square modulo
several integers, for instance 64, 63, 65, and 11, then it is very likely (in fact with a probability
bigger than 99%) that u is a square [COH 2000]. Testing more moduli eliminates more integers
u that are not a square. For instance, one can choose small odd moduli and pack them into a
highly composite integer N fitting in a word. Then one has to reduce © modulo N or, as suggested
by Harley [HAR 2002a], use Montgomery reduction, see Section 10.4.2, to derive an appropriate
approximation of the residue. Indeed, if ¢ is the word size, Montgomery reduction REDC of u
modulo N, whose cost is very cheap, returns an integer congruent to u/2¢ mod N. Now if u is an n-
word integer then n— 1 successive applications of REDC will give the single r = u/2/»~Y) mod N.
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From the Chinese remainder theorem, see Section 2.1.2, and the fact that £ is even, it is easy to see
that « is a square modulo N if and only if r is a square modulo every prime power p* dividing N.
As N has only small prime divisors, this can be tested very efficiently since it is sufficient to look at
the bit of order » mod p* of a precomputed mask m, reflecting the residues that are a square modulo
pP. If u passes all these tests, Algorithm 10.55 is used to ensure that v is really a square.

Example 10.58 Take b = 232, v = (2937606071 1090932004 1316444929),32 and set the value
of N to the single 32 x 52 x 7 x 11 x 17 x 19 x 23 x 29 = 3732515325. With the settings of
Section 10.4.2, put R = 232 and precompute (—1/N) mod R. After two successive Montgomery
reductions, one obtains 7 = 2783108164 = u/25* mod N. Now the squares modulo 9 being 0, 1, 4
and 7, the value of the mask m is set to 147 = (10010011)s. Since » mod 9 = 4, one looks at the
bit of weight 4 of m which is 1. This means that u is a square modulo 9.

This is also the case for all the other prime powers dividing N. For instance, the mask modulo 29
is m = (10011110100010010001011110011)5 and the bit of order r mod 29, that is 1, of m is 1
again. This shows that « has a very high probability (more than 99.54%) to be a square and indeed
if one computes v = |y/u]| with Algorithm 10.55 one can check that v? = u.

Note that a similar idea applies for cubes as well, and more generally for every power k. Bernstein
[BER 1998] also developed a different method where a real approximation of v = u!/* is first
computed before the consistency of the assumption u = v* is checked on the first few digits of u
and v.
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In this chapter, we are mainly interested in performance; see Section 2.3 for a theoretical presenta-
tion of finite fields. In the following, we consider three kinds of fields that are of great cryptographic
importance, namely prime fields, extension fields of characteristic 2, and optimal extension fields.
We will describe efficient methods for performing elementary operations, such as addition, multi-
plication, inversion, exponentiation, and square roots. The material that we give is implicitly more
related to a software approach; see Chapter 26 for a presentation focused on hardware. Efficient
finite field arithmetic is crucial in efficient elliptic or hyperelliptic curve cryptosystems and is the
subject of abundant literature [JUN 1993, LINI 1997, SHP 1999]. See also the preliminary version
of a book written by Shoup and available online [SHO], introducing basic concepts from computa-
tional number theory and algebra, and including all the necessary mathematical background.

There are some software packages implementing the algorithms described below, such as ZEN
[ZEN], which is a set of optimized C libraries dedicated to finite fields. There are also more general
libraries like NTL [NTL] or Lidia [LIDIA]. In addition, several computer algebra systems contain
functions for handling finite fields, for example Magma [MAGMA].

11.1 Prime fields of odd characteristic

Most of the algorithms detailed here carry through as well to Z/NZ for arbitrary moduli N, usu-
ally with some obvious modifications. However, here we are mainly interested in prime moduli.
Methods to find either an industrial-grade prime or a certified prime number p of the desired size
are described in Chapter 25.

201
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11.1.1 Representations and reductions

For representing finite prime fields we usually use the isomorphism between F,, and Z/pZ. Ele-
ments of Z/pZ are equivalence classes and we have to choose a representative, that is a particular
element in the class, to perform computations. The most standard choice is to represent x € Z/pZ
by the unique integer in [0, p — 1], which is in the class of 2. We can also use other representatives
such as the ones belonging to [—|p/2], |p/2]] or even an incompletely reduced number, which is
not uniquely determined, for it belongs to an interval of length greater than p; see Remark 26.45 (ii)
and [YAN 2001, YASAT 2002].

Given an integer u of arbitrary size we must be able to reduce it, i.e., to find the integer in [0, p—1]
which is congruent to u modulo p. This modular reduction is achieved by computing the remainder
of a Euclidean division.

However, since all the reductions are performed modulo the same prime number p, there exist
several improvements which, for instance, involve some precomputations. The most popular ones
are certainly the Montgomery and the Barrett methods; see Section 10.4. In this case the cost of
a reduction of a 2n-word integer modulo an n-word integer is asymptotically equal to a size n
multiplication.

To compute the remainder faster, other ideas include the choice of a special modulus allowing
a fast reduction; see Algorithm 10.25 for the use of a different normalization than the one initially
suggested by Knuth in Algorithm 10.30. Quisquater first proposed this method, which speeds up the
determination of an approximation of the quotient; see Remark 10.33 and Example 10.34. However,
this reduction method will increase the length of the modulus p by at least one digit, resulting in
additional multiplications when performing arithmetic in IF,,.

In the remainder, we address prime field arithmetic itself. Whatever representation is chosen,
prime field addition and subtraction algorithms are straightforward in terms of the corresponding
multiprecision algorithms for integers, cf. Algorithms 10.3 and 10.5. For example, with classical
representation, if u, v are integers in [0, p — 1], then u 4+ v < 2p and the modular addition of u and
v is simply v + v or u + v — p. In the same way, modular subtractionof uand visu —vifu > v
and v — v+ p when u < v. Montgomery representation is compatible with addition and subtraction
as well.

Now let us investigate multiplication algorithms in IF),.

11.1.2 Multiplication

Except special methods, like the one explained in [CHCH 19gg] that involves precomputations,
there are mainly two ways two perform a modular multiplication. The first one consists of a simple
integer multiplication with the schoolbook or Karatsuba methods, i.e., one of the Algorithms 10.8
or 10.11, followed by a reduction. The choice of the algorithm depends on the nature and the size
of the integer operands as well as on the computer architecture used.

The second one is designed as a single operation. In this case elementary multiplications and
reductions are interleaved so that the size of the intermediate results remains bounded. These two
options apply to Montgomery representation as well.

11.1.2.a Classical representation

Algorithm 11.1 is a general scheme to compute a modular multiplication. We have
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which can be written
w = (( .. ((un_lv mod p)b + u,—_2v mod p)b 4 -+ 4+ uqv mod p)b + uov) (mod p).

Ifwesett_y =0andt; = (t;—1b + up—;—1v) mod p then ¢,,_1 = wv (mod p). We deduce the
following algorithm:

Algorithm 11.1 Interleaved multiplication-reduction of multiprecision integers

INPUT: Two n-word integers & = (un—1 ... uo)p and v.
OUTPUT: An integer ¢ such that ¢ = uv (mod p).

1. t<0

2. fort=0 ton—1 do

3 t—th+ Un—i—1v

4. approximate ¢ = [¢/p| with § [see methods below]
5 t—1t—qp

6. return ¢

The approximation of ¢ can be achieved by Knuth, Barrett, or Quisquater methods. Knuth’s ap-
proach has already been explained, cf. Algorithm 10.30. The last two methods are described in
detail by Dhem in [DHE 1998]. See also Section 10.4.1 and Remark 10.33. Barrett writes

2n
_t_2nt—7127
i e

where n is the number of bits of p, then approximates ¢ by

7= %]

2n+1

2n . .
where we assume that VTJ has been precomputed. Dhem introduced a more general variant,
namely

|| B
n+ i3 2n+oz
Gg=|22— | with R= {—};—J-

o8

These additional parameters allow us to perform corrections on the remainder only at the end of the
whole multiplication process, when they are suitably tuned. Algorithm 11.1 works at a word level
and if b = 2¢ then optimal results are obtained with & = £ + 3 and 3 = —2. In this case we have
g—1 < ¢ < q and the intermediate results grow moderately. More precisely, given u, v < 2"t then
t = uv (mod p) returned by Algorithm 11.1 is less than 2”1, To get the final result, at most one
subtraction is needed. This implies also that an exponentiation or any other long computation can be
done with only one correction at the end of the whole process with the same choice of parameters.

Quisquater’s method [QUI 1990, QUI 1992] consists in multiplying p by a suitable coefficient
such that the reduction modulo Jp is easy. Set

2n+€+2
5= {

. t
J and get q = \‘WJ
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The (¢ + 2) highest bits of dp are now equal to 1 and the corresponding quotient is obviously
determined, since it is simply equal to the most significants bits of ¢. There is a fast way to compute

4, namely put
R 920+6
b=|——1|"
|

which verifies § < § < § 4 1, and a simple test gives the correct value. It is also possible to reduce
the size of §; see [DHE 1998, p.24]. This normalization avoids overflows in Algorithm 11.1 while
computing a multiplication or even a modular exponentiation.

Now suppose that one has the result  mod dp while we still want 2 mod p. For this, we could
perform (z mod dp) mod p but since an exact division is faster (see Section 10.5.3) it is better to

compute
dx mod dp

4]

Note that this method has been used in several smart cards; see for example [QUWA™ 1991] or
[FEMAT 1996].

r mod p = (11.1)

11.1.2.b Montgomery multiplication

Montgomery representation, see Section 10.4.2, was in fact introduced to carry out quick modular
multiplications. This property comes from the equality

((zR mod p)(yR mod p)R™! mod p) = (zyR) mod p

which implies that REDC([z][y]) = [zy]. Recall that Montgomery reduction is also useful to convert
elements between normal and Montgomery representations. Indeed, [x] = REDC(zR’) where R’ =
R? mod p has been precomputed and stored, and REDC([z]) = z.

Example 11.2 Take p = 2011,b = 23, R = 4096 so that R’ = 1454. Let = = 45, y = 97. Then

[z] = REDC(45 x 1454) = 1319 = (2447)s
[y] = REDC(97 x 1454) = 1145 = (2171)g
[2][y] = 1510255
[zy] = REDC(1510255) = 1250 = (2342)s
xy = REDC(1250) = 343.

One checks that 45 x 97 = 343 (mod 2011).

Of course, Montgomery method is completely irrelevant when only one product is needed. Instead,
operands are converted to and kept in Montgomery representation as long as possible. For instance,
if one wants [z?y], simply perform REDC([z][zy]).

The following algorithm computes directly REDC(uv) given multiprecision integers u and v in
Montgomery representation. It combines Algorithms 10.8 and 10.22.

Algorithm 11.3 Multiplication in Montgomery representation

INPUT: An n-word integer p = (pn—1...po)s primeto b, R = b", p’ = —p~! mod b and two

n-word integers © = (un—1...uo0)p and v = (vp—1...v0)p such that 0 < u, v < p.
OUTPUT: The n-word integer t = (t,—1 . .. to) equal to REDC(uv) = (uwR™') mod p.

1. t+0
2. for:=0 ton—1 do

3. mg — ((to + uivo)p') mod b
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4. t — (t +uiv + mip)/b
5. ift>pthent—t—p

6. return ¢

Remarks 11.4

(i) If R is chosen such that R > 4p and if u and v are positive and less than 2p then
REDC(uv) is bounded by 2p as well. This means that it is possible to avoid the sub-
traction in Line 5 of Algorithm 11.1 during long computations as exponentiations. At
the end of the whole process the result is normalized in Z/pZ at the cost of a single
subtraction [LEN 2002].

(i) See [KOACT 19g6] for a comparison of different variations of Montgomery method.

Example 11.5 Let us perform again the computation of Example 11.2 but at a word level with
Algorithm 11.3. Let u = [45] = 1319 = (2447)s and v = [97] = 1145 = (2171)s. Then

| 1 | u; top Mmy UV m;p t + u;v +m;p t |
—— — — — — — 0
07 0 3 (17517)s (13621)s (33340)s (3334)s
114 4 0 (10744)s 0 (14300)s (1430)s
214 0 4 (10744)s (17554)s (32150)s (3215)g
312 5 3 (4362)s (13621)s (23420)s (2342)5

One obtains REDC(uv) = (2342)s = [zy] = 1250 as previously.

Concerning modular squaring, the computation of the square of an integer can be achieved faster
(see Section 10.3.3); however the reduction takes the same time as in the case of a modular multi-
plication. Note that there are some dedicated methods like [HOOH™ 19g6], which are worth being
implemented if modular exponentiation is to be computed, as squarings are a very frequent opera-
tion.

11.1.3 Inversion and division

To get the inverse of some integer z, we can use the multiplicative structure of F;) which implies that
2P~2 x 2 = 2P~ =1 (mod p). However, Collins [COL 1969] showed that the average number of
arithmetic operations required by this approach is nearly twice as large as for the Euclid extended
algorithm, which computes integers u, v such that zu + pv = 1. See Section 10.6 for an exhaustive
presentation of extended gcd algorithms.

In the following section more specific methods are described, including Montgomery inversion
and a useful trick to compute several inverses simultaneously.

11.1.3.a Modular inversion

We start with a simplified and improved version of Algorithm 10.6.3, to compute the inverse of z
modulo p, introduced by Brent and Kung [BRKU 1983] and known as the plus-minus method.
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Algorithm 11.6 Plus-minus inversion method

INPUT: An odd modulus p and an integer x < p prime to p.
OUTPUT: The integer ! mod p.

—_

A—uz,B—p,Usa«—1,Ug <0 and 6 — 0
while |A| > 0 do
while A =0 (mod 2) do
A—A/2,U — (U/2)modp and § — 6 — 1
if 6 <O then
T— A A— B, BT
T—Ua,Us—Up,Up T
0 «— —6
if (A+ B)=0 (mod 4) then
A~ (A+ B)/2 and Ua «— ((Ua +Ug)/2) mod p
else A — (A—B)/2 and Ua < ((Ua — Ug)/2) mod p
if B=1 then v« Up else u+«—p—U,

© © N o o &> 0 D

a4 a4 a4
w M=o

return u

Remarks 11.7

(i) Algorithm 11.6 is based on the observation that if A and B are both odd then either A+ B
or A—Bisdivisibleby 4. If A+ B = 0 (mod 4) then ged(A, B) = ged((A+B)/2, B)
with (A+B)/2evenand |(A+ B)/2| < max{|A|,|B|}. Similar results holdif A— B =
0 (mod 4).

(ii) The counter ¢ is used to compare A and B, as the direct comparison can be time-
consuming, especially in hardware. Further improvements are described in [TAK 1998,
MEBU™ 2004]. The corresponding algorithms are well suited for hardware realizations
and can be implemented in parallel.

Example 11.8 Take p = 27 — 1 = 127 and = = 45. In the following table are given the values of
6, A, B, Uy, and Up at the end of the main while loop.

0 A B Ua Up

0 86 127 64 0
1 42 43 111 32
0 32 43 12 32
o5 22 1 40 48
4 6 1 34 48
3 2 1 96 48
2 0 1 0 48

So, the inverse of 45 modulo 127 is 48.

In a case where the modulus p is prime, one can also use a completely different algorithm due to
Thomas et al. [THKE™ 1986] to compute the inverse of 2 modulo p.
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Algorithm 11.9 Prime field inversion

INPUT: A prime modulus p and an integer x prime to p.
OUTPUT: The integer ! mod p.

1.

2
3
4.
5
6

z<«—axmodp and u «+— 1
while z # 1 do
q——|p/z]
zZ<—p+qz
u +— (qu) mod p

return u

Remarks 11.10

(i) Algorithm 11.9 is very simple to implement and is reported to be faster than the extended
Euclidean algorithm for some types of primes, for example Mersenne primes. Indeed,
in this case, the computation of ¢ in Line 3 can be carried out very efficiently. Note that
there exists also a dedicated algorithm to compute an inverse modulo a Mersenne prime
[CRPO 2001, p. 428].

(i) In general, the number of iterations needed by Algorithm 11.9 is less than for extended
gcd algorithms.

(ii) The modular division (k/x) mod p can be directly obtained with Algorithms 11.6 and
11.9. Namely, modify the first line of each algorithm and replace the statements U4 «— 1
and u < 1 respectively by U4 < k and u « k.

Example 11.11 Again, take p = 27 —1 =127 and x = 45. Here are the values of q, 2, and u at the
end of the while loop.

q =z U
-2 37 125
-3 16 6
-7 15 85
-8 7 82

—18 1 48

Again, we find that the inverse of 45 modulo 127 is 48. In this case only 5 iterations are needed
instead of 7 for Algorithm 11.6, cf. Example 11.8.

11.1.3.b Montgomery inversion and division

Montgomery’s article also deals with inversions and divisions [MON 1985]. Kaliski [KAL 1995]
develops specific algorithms to compute them. Recall the settings of Section 10.4.2 and let u be
an integer. Then the Montgomery inverse of u is defined as INV(u) = (u~'R?) mod p. So if
u = [r] = xR, we see that INV([z]) = (z7'R) mod p = [x~1]. Thus we have

REDC([z] INV[z]) = R mod p = [1].
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Algorithm 11.12 Montgomery inverse in Montgomery representation

INPUT: Two n-word integers w and p such that u € [1,p — 1]. The integer R = 2™ = b™ and
the precomputed value R’ = R? mod p.
OUTPUT: The n-word integer v equal to INV(u) = (u™' R?) mod p.

e

r«u,s«— 1,t—p,v—0and k0

2. while » >0 do

3. if t=0 (mod 2) then ¢ «— ¢/2 and s « 2s

4. elseif » =0 (mod 2) then r «— r/2 and v «— 2v
5. elseif t >r then t — (t —r)/2,v—v+s and s« 2s
6. elser — (r—t)/2,s —wv+s and v« 2v

7. E—k+1

8. ifv>pthen v—uv—p

9. v<«<p—v

10. if k <m then v — REDC(vR') and k — k+m

11. v« REDC(vR')

12. v «— REDC(v2*™~F)

13.  return v

Remarks 11.13

(i) Lines 1 to 9 compute the so-called almost Montgomery inverse i.e., (u~12*) mod p for
some k such that ¢ < k < m + ¢, where c is the binary length of p.

(i) It is possible to change the end of Algorithm 11.12 in order to compute directly the
inverse of u, i.e., v~ ! mod p with one or two extra Montgomery multiplications, namely
replace Lines 10, 11, and 12 by

10. if kK > m then v — REDC(v) and k — k—m
1. v < REDC(v2™F)

(iii) To divide [x] by [y] it suffices to do REDC ([z] INV([y])) and get [zy~*].

Example 11.14 With the settings of Example 10.24, let us compute the Montgomery inverse of
[45] = 1319. Since p = 2011 is a 4-word integer in base 8, we have m = 12.

« After Line 9, Algorithm 11.12 has computed the almost Montgomery inverse of 1319,
which is 1252, and found k = 17. This means that 1319~ x 2!7 mod 2011 = 1252.

« Lines 10 and 11 compute REDC(1252R’) = 142 and finally REDC(142 x 224-17) =
1387, which is the Montgomery inverse of 1319. We check that REDC(1319 x 1387) =
74 = R (mod p).

« If we want the inverse of 1319 modulo 2011, we perform REDC(1252) = 1267 and set
k « 5. Then REDC(1267 x 2127%) = 1485 = 1319~ (mod 2011).

The next section allows us to compute the inverse of several numbers modulo the same number p.
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11.1.3.c Simultaneous inversion

One needs a priori j extended gcd computations to find the inverses of the j elements ay, ..., a;
modulo p. Here we present a trick of Montgomery that allows us to do the same with only one
extended ged and 3j — 3 multiplications modulo p. The basic idea is to get the inverse of [ [, a; and

to multiply it by suitable terms to recover a;l, NN afl [COH 2000].

Algorithm 11.15 Simultaneous inversion modulo p

INPUT: A positive integer p and j integers a1, . .., a; not zero modulo p.
OUTPUT: The inverses b1, ..., b; of the a1, ..., a; modulo p.

1. ¢ — a1

2. fort=2 to j do ¢; < aici—1

3. compute (u,v, d) with uc; +vp =d [dis equal to 1]
4. for : =j downto 2 do

5. bi < (uci—1) mod p and u « (ua;) mod p

6. br—u

7. return (by,...,b;)

Remarks 11.16

(i) Let N be a nonprime modulus. If one tries to apply Algorithm 11.15 to the nonzero
residues a1, ..., a; modulo IV, there are two possibilities. If a1, ..., a; are all coprime
to N then Algorithm 11.15 returns al_l, NN aj_1 modulo N. If at least one integer is
not coprime to N then the gcd computed in Line 3 is different from 1. In this case, if
the Lines 4 to 7 of Algorithm 11.15 are replaced by the following statements

4. if d= N then

5 i 1

6 repeat

7. d — ged(a;, N) and 4 i+ 1
8 until d > 1

9. return d

then a nontrivial factor of N is returned.

(i) This modified algorithm is especially useful for Lenstra’s elliptic curve method, cf. Sec-
tion 25.3.3, where one tries to find factors of N by computing scalar multiples on a curve
modulo V.

11.1.4 Exponentiation

This part deals with specific exponentiation methods for finite fields IF,,. The general introduction
to the subject can be found in Chapter 9.

11.1.4.a Ordinary exponentiation

To compute 2", for z € IF),, one could perform the exponentiation in Z and then reduce the result.
Of course, this approach is completely inefficient even for rather small n. However, a systematic
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reduction after each intermediate step, i.e., a squaring or a multiplication, seems inadequate as
well since a modular reduction is quite slow. So, a compromise must be found. One can also
use Barrett or Quisquater multiplication algorithms without the remainder correction steps; see
Section 11.1.2.a. With appropriate settings, intermediate results are kept bounded such that they
still fit in the allocated space, and only at the end of the exponentiation one corrects the result so
that it belongs to [0, p — 1].

11.1.4.b Montgomery exponentiation

All algorithms presented in Chapter 9 can be adapted to Montgomery representation. The changes
are always the same and rather simple: as explained in Section 11.1.2.b, one converts to and from
Montgomery representation only for input/output, so any amount of operations can be done in be-
tween. These ideas are illustrated in the following adaptation of the classical square and multiply
algorithm, cf. Section 9.1.1.

Algorithm 11.17 Binary exponentiation using Montgomery representation

INPUT: An element x of IF;, a positive integer n = (n¢—1...no)2 such that n,—; = 1, the
integers R and R’ = R? mod p.
OUTPUT: The element 2™ € [Fy.

1. y <« Rmodp and t «+ REDC (zR’)
2. for i=t¢t—1 downto O

3. y « REDC(y?)

4 if n; =1 then y «— REDC(ty)
5

return REDC(y)

Remark 11.18 Conversion to Montgomery representation is done in Line 1. One has y = [1]
and ¢t = [z]. In the for loop at each step a Montgomery squaring and possibly a Montgomery
multiplication is performed. Finally we come back to the standard representation by a Montgomery
reduction. At the end, y = [z"] so that REDC(y) = 2, as expected. Note that also here incomplete
reduction can be applied.

11.1.5 Squares and square roots

Given a nonzero integer a modulo p, the Legendre symbol (9) defined in Section 2.3.4 is equal to
1 if and only a is a quadratic residue modulo p. From the reciprocity law (2.6) and Theorem 2.103,
it is easy to derive an efficient way to compute it.

Algorithm 11.19 Legendre symbol

INPUT: An integer a and an odd prime number p.

OUTPUT: The Legendre symbol (£)-
1. k<1
2. while p#1 do
3. if a =0 then return 0
4. v« 0
5. while ¢ =0 (mod 2) do v «—v+1 and a < a/2
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6. if v=1 (mod 2) and p= £3 (mod 8) then k — —k
7. if =3 (mod 4) and p =3 (mod 4) then k «— —k

8. r«a,a<—pmodr and p«—r

9. return k

Remark 11.20 This algorithm is useful, for example, to determine the number of points lying on
an elliptic or hyperelliptic curve defined over a finite field of small prime order, cf. Chapter 17.

Example 11.21 Take the prime p = 163841, a = 109608 and let us compute (£) with Algo-
rithm 11.19. The next table displays the values of r, a, v and k after Line 8.

r a v k
13701 13130 3 1
6565 571 1 -1
571 284 0 -1
71 3 2 1

2 0 -1

0 1 1

These computations reflect the following sequence of equalities
109608 B 8 13701
163841) 163841 ) \ 163841

13130 _ 2 6565
13701 B 13701 / \ 13701

284 _ 4 71
571 n 571 )\ 571

I

|
N
Wl o
S~

= 1.
So, 109608 is a quadratic residue modulo 163841.

When it is known that a is a square, it is often required to determine z such that 22 = a (mod p).
For instance, this occurs to actually find a point lying on an elliptic or hyperelliptic curve.

Lemma 11.22 Given a quadratic residue a € F,,, there are explicit formulas when p # 1 (mod 8)
to determine = € F,, such that 22 = a (mod p). Namely,

+a®PtD/% (mod p) if p =3 (mod 4)

e 2= +a®t3/8 (mod p)ifp =5 (mod 8) and aP~D/* =1

e 2= +2a(4a)P=>)/% (mod p)if p="5 (mod 8) and aP~D/* = 1.

8
M1l

Whenp =1 (mod 8) an algorithm of Tonelli and Shanks solves the problem. In fact, this algorithm
is correct for all primes.
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Algorithm 11.23 Tonelli and Shanks square root computation

INPUT: A prime p and an integer a such that (%) =1
OUTPUT: An integer z such that 2% = a (mod p).

1. write p — 1 = 2°r with r odd

choose n at random such that (%) =-1

z+<—n" modp,y« z s+ e and xz — alm" /2

while b # 1 (mod p)

2

3

4. b+ (az®) mod p and x « (ax) mod p
5

6 m 1

7

while b>” % 1 (mod p) do m — m + 1

mod p

t— y2s_m_1 mod p,y — t> mod p and s — m

9. x < (tz) mod p and b« (yb) mod p

10. return

[see the beginning of Section 10.5, p. 185]

Remarks 11.24

(i) Algorithm 11.23 works in the maximal 2-group of order 2¢ of I, generated by some
element z. If m = s after Line 7, this implies that a is not a quadratic residue modulo
p. Otherwise a” is a square in this subgroup and there is an even k less than e such that
a"z® = 1 (mod p). The square root is then given by = = a("+*1/22%/2 (mod p). A
variant of Algorithm 11.23 finds k/2 by a bit by bit approach [KOB 1994].
(ii) The number of loops performed within the while loop beginning in Line 5 is bounded

by e since s is strictly decreasing at each loop.

(iii) The expected running time of Algorithm 11.23 is O(e? 1g? D).

Example 11.25 Let us compute the square root of 109608 modulo p = 163841 with Algorithm
11.23. First one sees that e = 15 and » = 5. The quadratic nonresidue n found at random in Line 2
is 6558. In the following, we state the values of the principal variables before the while loop in

Line 4 and at the end of it Line 9. One can see also that ab — z2, y>

throughout the execution of the algorithm.

1 s—1 . .
and b2 are invariant

m z Y x b t ab x? y2
— 12002 12002 13640 100808 — 90065 90065 —1 1
13 — 82347 78996 68270 31765 | 155849 155849 -1 1
12 — 140942 104389 56092 82347 | 162252 162252 —1 1
6 — 81165 18205 57313 52992 | 135523 135523 —1 1
) — 38297 90687 101925 81165 | 132974 132974 —1 1
3 — 101925 97748 39338 119418 | 119748 119748 —1 1
2 — 39338 121372 163840 101925 | 54233 54233 -1 1
1 — 163840 41155 1 39338 | 109608 109608 —1 1

One checks that 411552 = 109608 (mod p).
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When the 2-adic valuation e of p — 1 is large, as in the previous example, it is better to use another
algorithm that works in the quadratic extension [ ..

Algorithm 11.26 Square root computation

INPUT: A prime p and an integer @ such that (%) =1
OUTPUT: An integer  such that 2° = a (mod p).

1. choose b at random such that (%) =-1

2. f(X)—X?-bX+a [f(X) is irreducible over )]
3. x— XPV/2 (mod f(X))

4. return x

Remarks 11.27

(i) If 0 is a root of f(X) then 6P is the other one and therefore 9! = a. So z as defined
in Line 3 satisfies 2 = a (mod f(X)). It remains to show that 2 is in fact an ele-
ment of F,. As a®~1/2 = 1 we have X® ~1/2 =1 (mod f(X)) so that 2P = z
(mod f(X)). ‘

(i) The expected running time of Algorithm 11.26 is O(Ig> p).

Example 11.28 With the same initial values as in Example 11.25, Algorithm 11.26 first finds at
random an irreducible polynomial over F,, in this case, for instance, f(X) = X? + 27249X +
109608. Then it computes X (P*1)/2 which is equivalent to 41155 modulo f(X).

11.2 Finite fields of characteristic 2

See Section 2.3.2 for an introduction to algebraic extension of fields. Arithmetic in extension fields
of I, where ¢ is some power of 2 relies on elementary computer operations like exclusive dis-
junction and shifts. Note that in general ¢ is simply equal to 2. This allows very efficient imple-
mentations, especially in hardware, and gives finite fields of characteristic 2 a great importance in

cryptography.

11.2.1 Representation

See Section 2.3.3 for a presentation of the different finite field representation systems. In the fol-
lowing we shall focus on efficient implementation techniques used in cryptography. As Faa is a
vector space of dimension d over Fs, an element can be viewed as a sequence of d coefficients
equal to 0 or 1. Therefore it is internally stored as a sequence of bits and the techniques intro-
duced for multiprecision integers apply with some slight modifications. Two kinds of basis are
commonly used. In polynomial representation, it is (1, X, ..., X9~1), whereas with a normal basis
itis (a,a?,..., a2’ ), cf. Section 2.3.3. Let us first describe polynomial representation.

11.2.1.a Irreducible polynomial representation

Let m(X) € Fy[X] be an irreducible polynomial of degree d and (m(X)) the principal ideal
generated by m(X). Then Fy[X]/(m(X)) is the finite field with ¢ elements. Formula (2.4)
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proves that there exists an irreducible polynomial of degree d for each positive d but the proof is
not constructive. To find such a polynomial, we can consider a random polynomial and test its
irreducibility. Since (2.4) shows that the probability for a monic polynomial of degree d to be
irreducible is close to 1/d, we should find one after d attempts on average. There is a variety of
polynomial irreducibility tests. For example Rabin [RAB 1980] proved the following.

Lemma 11.29 Let m(X) € F,[X] of degree d and let p1, ..., pi be the prime divisors of d. Then
m(X) is irreducible over F, if and only if

-gcd(m(X),Xq —X)zl, fori =1,...,k
o m(X) divides X' — X.

d/p;

For a deterministic method to find an irreducible polynomial see [SHO 1994b].

Once m(X) has been found, computations are done modulo this irreducible polynomial and re-
duction is a key operation. For this we need to divide two polynomials with coefficients in a field.
Every irreducible polynomial of degree d can be used to build I «; however, some special polyno-
mials offer better performance, e.g., monic sparse polynomials are proposed in [SCOR™ 1995].

Usually, one uses trinomials or pentanomials since binomials and quadrinomials are always di-
visible by X + 1 and so, except for X + 1 itself, are never irreducible in F,[X]. The existence for
every d of an irreducible degree d trinomial or pentanomial is still an open question, but this is the
case at least for all d < 10000 [SER 1998].

A trinomial X¢ + X* + 1 is reducible if both d and k are even as then X¢ + X* +1 = (X4/? 4
X%/2 4 1)2. Eliminating this trivial case, Swan [SWA 1962] proves the following.

Lemma 11.30 The trinomial X%+ X%+ 1, where at least one of d and k is odd, has an even number
of factors if and only if one of the following holds

« diseven, kisodd, d # 2k and d—Qk =0orl (mod 4)
e disodd,d = £ 3 (mod 8), k is even and k does not divide 2d
e disodd,d = £ 1 (mod 8), k is even and k divides 2d.

It follows that irreducible trinomials do not exist when d = 0 (mod 8) and are rather scarce for
d=3or5 (mod 8). In Table 11.1, we give irreducible polynomials over Fy of degree less than or
equal to 500. More precisely, the coefficients d, k1 in the table stand for the trinomial X%+ X*1 41,
In case there is no trinomial of degree d, the sequence d, k1, ko, k3 is given for the pentanomial
X944 Xk 4 Xk 4 Xk 4 1. For each d the coefficient k; is chosen to be minimal, then k5 and so
on.

For these sparse polynomials there is a specific reduction algorithm [GANO 2005]. The nonre-
cursive version is given hereafter.

Algorithm 11.31 Division by a sparse polynomial

INPUT: Two polynomials m(X) and f(X) with coefficients in a commutative ring, where m(X)
is the sparse polynomial X% + Zle a; X" with b; < bip1 and by = 0.
OUTPUT: The polynomials w and v such that f = um + v with degv < d.

1. v« fand u<0

while deg(v) > d do
k «— max{d,degv —d + b, + 1}
write v(X) as u1 (X) X* 4+ w(X) [degw < k]
v(X) — w(X) —ui(z)(m(X) — X)X+

a M DN
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6. w(X) — ur (X)X 4+ u(X)

7. return (u,v)

Remarks 11.32

(i) If deg f = d’ then Algorithm 11.31 needs at most 2¢(d" — d + 1) field additions to
compute ¢ and v such that f = um + v. If d’ < 2d — 2, as is the case when perform-
ing arithmetic modulo m, then one needs 4(d — 1) additions for a reduction modulo a
trinomial and 8(d — 1) additions modulo a pentanomial. The number of loops is at most
[(d—d+1)/(d— b —1)]. Again if d’ < 2d — 2, then the number of loops is at most
equal to 2 whatever the value of by, as long as 1 < b; < d/2.

(i) To avoid computing the quotient u when it is not required, simply discard Line 6 of
Algorithm 11.31.

(iii) When the modulus is fixed, there is in general an even faster algorithm that exploits the
form of the polynomial. This is the case for NIST irreducible polynomials [F1PS 186-2],
cf. for example [HAME™ 2003, pp. 55-56]

Example 11.33 Take m(X) = X'+ X2+ 1and f(X) = X204+ X164 X154 X124 X5 4 X34
X + 1, and let us find the quotient and remainder of the division of f by m with Algorithm 11.31.

e Firstk =12, u1(X) = X8+ X*+ X3+ landw(X) = X° + X3+ X + 1.

« The new value of v(X)is X' + X% 4+ X7+ X6 + X4+ Tandu(X) = X? + X° +
X'+ X

« For the next and last loop, & = 11, u; (X) = land w(X) = X + X7+ X6 + X* + 1.

Finally, v(X) = X%+ X7+ X%+ X4+ X2 and u(X) = X+ X° + X*+ X + 1 and one checks
that f(X) = w(X)m(X) + v(X).

Instead of trying to minimize the number of nonzero coefficients of the modulus, another option is
to do arithmetic modulo a sedimentary polynomial [COP 1984, ODL 1985], that is, a polynomial of
the form X ¢ + h(X) irreducible over IF, such that the degree of h(X) is minimal. For ¢ = 2, it has
been shown that for all d < 600 the degree of h is at most 11 [GOMC 1993]. Algorithm 11.31 can
be slightly modified to perform reduction modulo a sedimentary polynomial. Namely, replace the
statement k < max{d,degv — d + b; + 1} by k «+ max{d, degv — deg h}.

Tests performed in [GANO 2005] indicate that sedimentary polynomials are slightly less efficient
than trinomials or pentanomials.

11.2.1.b Redundant polynomial representation

For some extensions of even degree there is a better choice, namely all one polynomials. They are
of the form
m(X)=X1+ X 4 X 1

For d > 1, such a polynomial is irreducible if and only if d 4 1 is prime and 2 is a primitive element
of Fgy1. Now it is clear from the definition of m(X) that m(X)(X + 1) = X! + 1. Thus
an element of F5a can be represented on the basis (o, o2, ..., a?) where « is a root of m(X). In
other words, an element of [Fya is represented by a polynomial of degree at most d without constant
coefficient, 1 being replaced by X + X2 + ... + X7 Alternatively, if the representation does not

need to be unique, elements can directly be written on (1, X, X2, ..., X%). In any case, reductions
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Table 11.1 Irreducible trinomials and pentanomials over [F's.

2,1 3,1 4,1 52 6,1 71 8,4,3,1 91 10,3
11,2 12,3 13,4,3,1 14,5 15,1 16,5,3,1 17,3 18,3 19,5,2,1 20,3
21,2 22,1 23,5 24,4,31 25,3 26,4,3,1 27,5,2,1 28,1 29,2 30,1
31,3 32,7,3,2 33,10 34,7 35,2 36,9 37,6,4,1 38,6,5,1 39,4 40,5,4,3
41,3 42,7 43,6,4,3 44,5 45,4,3,1 46,1 47,5 48,5,3,2 49,9 50,4,3,2
51,6,3,1 52,3 53,6,2,1 54,9 55,7 56,7,4,2 57,4 58,19 59,7,4,2 60,1
61,5,2,1 62,29 63,1 64,4,3,1 65,18 66,3 67,5,2,1 68,9 69,6,5,2 70,5,3,1
71,6 72,10,9,3 73,25 74,35 75,6,3,1 76,21 77,6,5,2 78,6,5,3 79,9 80,9,4,2
81,4 82,8,3,1 83,7,4,2 84,5 85,8,2,1 86,21 87,13 88,7,6,2 89,38 90,27
91,8,5,1 92,21 93,2 94,21 95,11 96,10,9,6 97,6 98,11 99,6,3,1 100,15
101,7,6,1 102,29 103,9 104,4,3,1 105,4 106,15 107,9,7,4 108,17 109,5,4,2 110,33
111,10 112,5,4,3 113,9 114,5,3,2 115,8,7,5 116,4,2,1 117,5,2,1 118,33 119,8 120,4,3,1
121,18 122,6,2,1 123,2 124,19 125,7,6,5 126,21 127,1 128,7,2,1 129,5 130,3
131,8,3,2 132,17 133,9,8,2 134,57 135,11 136,5,3,2 137,21 138,8,7,1 139,8,5,3 140,15
141,10,4,1 142,21 143,532 144,7,42 145,52 146,71 147,14 148,27 149,10,9,7 150,53
151,3 152,6,3,2 153,1 154,15 155,62 156,9 157,6,5,2 158,8,6,5 159,31 160,5,3,2
161,18 162,27 163,7,6,3 164,10,8,7 165,9,8,3 166,37 167,6 168,15,3,2 169,34 170,11
171,6,5,2 1721 173,852 174,13 175,6 176,11,32 177,8 178,31 179,4,21 180,3
181,7,6,1 182,81 183,56 184,9,8,7 185,24 186,11 187,7,6,5 188,6,5,2 189,6,5,2 190,8,7,6
191,9 192,7,2,1 193,15 194,87 195,8,3,2 196,3 197,9,4,2 198,9 199,34 200,5,3,2
201,14 202,55 203,8,7,1 204,27 205,9,5,2 206,10,9,5 207,43 208,9,3,1 209,6 210,7
211,11,10,8 212,105 213,6,52 214,73 215,23 216,7,3,1 217,45 218,11 219,8,4,1 220,7
221,8,6,2 222,5,4,2 223,33 224,9,8,3 225,32 226,10,7,3 227,10,9,4 228,113 229,10,4,1  230,8,7,6
231,26 232,9,4,2 233,74 234,31 2835,9,6,1 236,5 287,7,4,1 238,73 239,36 240,8,5,3
241,70 242,95 243,8,51 244,111 245,6,4,1 246,11,2,1 247,82 248,15,14,10 249,35 250,103
251,7,4,2 252,15 253,46 254,721 255,52 256,10,5,2 257,12 258,71 259,10,6,2 260,15
261,7,6,4 262,9,8,4 263,93 264,9,6,2 265,42 266,47 267,8,6,3 268,25 269,7,6,1 270,53
271,58 272,9,3,2 273,23 274,67 275,11,10,9 276,63 277,12,6,3 278,5 279,5 280,9,5,2
281,93 282,35 283,12,7,5 284,53 285,10,7,5 286,69 287,71 288,11,10,1 289,21 290,5,3,2
291,12,11,5 292,37 293,11,6,1 294,33 295,48 296,7,3,2 297,5 298,11,8,4 299,11,6,4 3005
301,9,5,2 302,41 303,1 304,11,2,1 305,102 306,7,3,1 307,8,4,2 308,15 309,10,6,4 310,93
311,7,5,3 312,9,7,4 313,79 314,15 315,10,9,1 316,63 317,7,4,2 318,45 319,36 320,4,3,1
321,31 322,67 323,10,3,1 324,51 325,10,5,2 326,10,3,1 327,34 328,8,3,1 329,50 330,99
331,10,6,2 332,89 333,2 334,5,2,1 335,10,7,2  336,7,4,1 337,55 338,4,3,1 339,16,10,7 340,45
341,10,8,6 342,125 343,75 344,7,21 345,22 346,63 347,11,10,3 348,103 349,6,5,2 350,53
351,34 352,13,11,6 353,69 354,99 355,6,5,1 356,10,9,7 357,11,10,2 358,57 359,68 360,5,3,2
361,7,4,1 362,63 363,8,53 364,9 365,9,6,5 366,29 367,21 368,7,3,2 369,91 370,139
371,8,3,2 372,111 373,8,72 374,8,6,5 375,16 376,8,7,5 377,41 378,43 379,10,8,5 380,47
381,5,2,1 382,81 383,90 384,12,3,2 385,6 386,83 387,8,7,1 388,159 389,10,9,5 390,9
391,28 392,13,10,6 393,7 394,135 395,11,6,56 396,25 397,12,7,6  398,7,6,2 399,26 400,5,3,2
401,152 402,171 403,9,8,5 404,65 405,13,8,2 406,141 407,71 408,5,3,2 409,87 410,10,4,3
411,12,10,3 412,147 413,10,7,6 414,13 415,102 416,9,5,2 417,107 418,199 419,15,5,4  420,7
421,5,4,2 422,149 423,25 424,9,7,2 425,12 426,63 427,11,6,5 428,105 429,10,8,7 430,14,6,1
431,120 432,13,4,3 433,33 434,12,11,5 435,129,5 436,165 437,6,2,1 438,65 439,49 440,4,3,1
441,7 442,7,5,2 443,10,6,1 444,81 445,7,6,4 446,105 447,73 448,11,6,4 449,134 450,47
451,16,10,1 452,6,5,4 453,15,6,4 454,8,6,1 455,38 456,18,9,6 457,16 458,203 459,12,5,2 460,19
461,7,6,1 462,73 463,93 464,19,18,13 465,31 466,14,11,6 467,11,6,1 468,27 469,9,5,2 470,9
4711 472,11,3,2 473,200 474,191 475,9,8,4 476,9 477,16,15,7 478,121 479,104 480,15,9,6
481,138 482,9,6,5 483,9,6,4 484,105 485,17,16,6 486,81 487,94 488,4,3,1 489,83 490,219
491,11,6,3 492,7 493,10,5,3 494,17 495,76 496,16,52 497,78 498,155 499,11,6,5 500,27
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are made modulo X¥*! + 1 and a squaring is simply a permutation of the coordinates. This idea,
first proposed in [ITTS 1989] and rediscovered in [SIL 1999], is known as the anomalous basis or
the ghost bit basis technique.

When d > 1 is odd, one can always embed Fy into some cyclotomic ring Fo[X]/(X™ + 1) but
only for some n > 2d + 1. So the benefits obtained from a cheap reduction are partially offset by
a more expensive multiplication [WUHA™ 2002]. For elliptic and hyperelliptic curve cryptography
only extensions of prime degree are relevant, cf. Chapter 22, so the best we can hope for with this
ideaisn = 2d + 1.

Adopting the idea of using sparse reducible polynomials with an appropriate irreducible factor,
one can use reducible trinomials in case only an irreducible pentanomial exists for some degree d.
First, we have to find a trinomial 7(X) = X" + X* + 1 with n slightly bigger than d and such
that 7'(X ) admits an irreducible factor m(X) of degree d. Such a trinomial is called a redundant
trinomial and the idea is then to embed Foa ~ F2[X]/(m (X)) into Foa ~ F2[X]/(T(X)). In the
range [2,10000], there is no irreducible trinomial in about 50% of the cases (precisely 4853 out of
9999 [SER 1998]) but an exhaustive search has shown that there are redundant trinomials for all the
corresponding degrees, see [DOCHE] for a table. In general n — d is small and in more than 85%
of the cases the number of 32-bit words required to represent an element of [Fya are the same with a
redundant trinomial of degree n and with an irreducible pentanomial of degree d. This implies also
that the multiplication has the same cost with both representations, since this operation is usually
performed at a word level, cf. Section 11.2.2.a.

From a practical point of view an element of [Fya is represented by a polynomial of degree less
than n and the computations are done modulo 7'(X). At the end of the whole computation, one can
reduce modulo m(X') and this can be done with only 7'(X) and 6(X) = T'(X)/m(X), since for
any polynomial f(X) one has

F(X)d(X) mod T'(X)

f(X)mod m(X) = 5(X) ,

as in (11.1). Redundant trinomials can speed up an exponentiation by a factor up to 30%, when
compared to irreducible pentanomials, cf. [DOC 2005].

Note that this concept is in fact similar to almost irreducible trinomials introduced by Brent and
Zimmermann in the context of random number generators in [BRZI 2003]. Similar ideas were also
explored by Blake et al. [BLGA™ 1994a, BLGAT 1996], and Tromp et al. [TRZHT 1997].

11.2.1.c Normal and optimal normal bases

Another popular way to represent an element of F 4 over F, is to use a normal basis. This is
especially true when ¢ = 2, since in this case the squaring of an element is just a cyclic shift of its
coordinates. However, multiplications are more complicated. As a result only special normal bases,
called optimal normal bases, ONB for short, are used in practice; see Section 11.2.2.b.

GauB periods of type (n,1) and (n,2), generate optimal normal bases (cf. Section 2.3.3.b and
[MUONT™ 1989]), and it has been proved that all the optimal normal bases can be produced by this
construction [GALE 1992].

For ¢ = 2, this occurs

1. when d + 1 is prime and 2 is a primitive element of Fy1. Then the nontrivial (d + 1)-th
roots of unity form an optimal normal basis of V4, called a Type I ONB.
2. when 2d + 1 is prime and either
« 2 is primitive in Fa44; or
« 2 generates the quadratic residues in Fog11, thatis 2d + 1 = 3 (mod 4) and the
order of 2 in Fog4 1 is d.
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Then there is a primitive (2d+1)-th root of unity ¢ in Fya and (+¢ ~! is a normal element
generating a Type II ONB. Such a basis can be written (¢ +¢ !, (2 +¢72,...,¢¢4+¢9)
as shown in [BLRO™ 19g8].

Note that Type I ONB and anomalous bases are equal up to suitable permutations. So it is possible
to enjoy a cheap multiplication and a cheap squaring at the same time. However, as said previously,
there is no Type I ONB for an extension of prime degree. The situation is slightly better for Type
IT ONB. Indeed, in the range [50, 500] there are 80 extension degrees that are prime and among
them only 18 have a Type II ONB, namely 53,83,89,113,131,173,179,191, 233,239, 251, 281,
293,359,419,431,443, and 491. As a consequence, the use of optimal normal bases for crypto-
graphic purposes is quite constrained in practice.

In the remainder of this section one details the arithmetic itself. First it is clear that addition and
subtraction are the same operations in a field of characteristic two. Using polynomial representation
or a normal basis one sees that an addition in I« can be carried out with at most d additions in
F,. Ultimately, an addition in F . reduces to a bitwise-XOR hardware operation, which can be
performed at a word level. Multiplications are also processed using a word-by-word approach.

11.2.2 Multiplication

Again this part mainly deals with software oriented solutions. For a discussion focused on hardware,
see Chapter 26.

Montgomery representation for prime fields (see Section 10.4.2) can be easily generalized to
extension fields of characteristic 2; see for instance [KOAC 1998]. We shall not investigate this
option further but limit ourselves to multiplications using a polynomial basis and a normal basis.

11.2.2.a Polynomial basis

The internal representation of a polynomial is similar to multiprecision integers. Indeed, let ¢ be the
word size used by the processor. Then a polynomial u(X) of degree less than d will be represented
as the r-word vector (u,_1 ... uo) and the j-th bit of the word w;, that is the coefficient of u(X)
of degree i + j, will be denoted by wu;[j]. Many operations on polynomials are strongly related
to integer multiprecision arithmetic. For example, polynomials can be multiplied with a slightly
modified version of Algorithm 10.8. However in general, we do not have the equivalent of single
precision operations. For example, on computers there is usually no hardware multiplication of
polynomials in F3[X] of bounded degree, even if this operation is simpler than integer multiplica-
tion, since there is no carry to handle. Nevertheless, it is possible to perform computations at a word
level doing XOR and shifts. Indeed, if v(X ) X7 has been already computed then it is easy to deduce
v(X)X¥*J, This is the principle of Algorithm 11.34 introduced in [LODA 2000a].

Algorithm 11.34 Multiplication of polynomials in Fa[X]

INPUT: The polynomials u(X ), v(X) € F2[X] of degree at most d — 1 represented as words of
size { bits.
OUTPUT: The product w(X) = u(X)v(X) of degree at most 2d — 2.

1. w(X) <« 0 and r « [degu/{]

2. for =0 to {—1 do

3. for : =0 tor—1

4 if u;[j] =1 then w(X) — w(X)+v(X)X*
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5. if j#¢—1 then v(X) «— v(X)X

6. return w

Remark 11.35 Algorithm 11.34 proceeds the bits of the word w,; from the right to the left. A left-
to-right version exists as well, but it is reported to be a bit less efficient [HAME™ 2003].

Example 11.36 Let u(X) = X°+ X4+ X2+ X, 0(X) = X104 X4+ X7+ X0+ X4 X4+ X341
and £ = 4. So u = (0011 0110), v = (0110 1111 1001) and » = 2. Here are the values of v(X)
and w(X) at the end of Line 5 when Algorithm 11.34 executes.

] 0 1 2 3 |
v|  (110111110010) (0001 1011 1110 0100) (0011 0111 1100 1000) (0110 1111 1001 0000)
w| (0110 1111 1001 0000) (1011 1101 0100 0010) (1010 0110 1010 0110) (1010 0110 1010 0110)

Finally w(X) = X1 4+ X1 + X104 X9 4 X7+ X5+ X2 4+ X.

Just as for exponentiation algorithms, precomputations and windowing techniques can be very help-
ful. The next algorithm scans k bits at a time from left to right and accesses intermediate products by
table lookup. Usually a good compromise between the speedup and the number of precomputations
is to take k = 4.

Algorithm 11.37 Multiplication of polynomials in F2 [ X| using window technique

INPUT: The polynomials u(X ), v(X) € F2[X] of degree at most d — 1 represented as words of
size ¢ bits. The precomputed products ¢(X )v(X) for all £(X) of degree less than k.
OUTPUT: The product w(X) = u(X)v(X) of degree at most 2d — 2.

1. w(X)«— 0 and 7 « [degu//]

2. for j=/{/k—1 downto O do

3 for i=0 tor—1

4. H(X) — tp 1 X*7 4+ to where ti, = wi[jk 4 m]

5 w(X) — w(X) + t(X)v(X) X" [t(X)v(X) is precomputed]
6 if j#0 then w(X) «— w(X)X"*

7. return w

Remark 11.38 As for prime fields, cf. Algorithm 11.1, it is possible to modify Algorithm 11.37 and
interleave polynomial reductions with elementary multiplications in order to get the result in Fyu
directly at the end.

Example 11.39 To illustrate the way Algorithm 11.37 works, let us take k¥ = 2, v = (0011 0110),
v = (0110 1111 1001) and ¢ = 4 as for Example 11.36. The successive values of ¢ come from the
bits of w in the following way (0011 0110), (0011 0110), (0011 0110), and (0011 0110).
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j 1 1 0 0

i 0 1 0

t (01) (00) (10) (11)

w| (0110 1111 1001) (0110 1111 1001) (0001 0110 0001 0110) (1010 0110 1010 0110)

The result is of course the same, i.e., w(X) = X1° + X3 + X104+ X9 + X7+ X5+ X2 + X.

Another idea is to emulate single precision multiplications by storing all the elementary products.
However, for 32-bit words the number of precomputed values is far too big. That is why an inter-
mediate approach involving Karatsuba method is often considered instead. In this case, the product
of two single precision polynomials of degree less than 32 is computed with 9 multiplications of
8-bit blocks, each elementary product being obtained by table lookup [GAGE 1996].

Karatsuba method can also be applied to perform the whole product directly. In [GANO 2005]
the crossover degree between a la schoolbook and Karatsuba multiplications is reported to be equal
to 576. Other more sophisticated techniques like the FFT or Cantor multiplication based on eval-
uation/interpolation are useful only for even larger degrees. For example, the crossover between
Karatsuba and Cantor multiplication is for degree 35840 [GANO 2005].

11.2.2.b Optimal normal bases

Unlike additions, multiplications are rather involved with normal bases. The standard way to mul-
tiply two elements in Fj« within a normal basis is to introduce the so-called multiplication matrix
Tnr whose entries t; j, satisfy

d—1 d—1
i h i j h
al xa= E tipa?  sothat of xaf = E tijn—jat .
h=0 h=0
Soifu = (ug,...,uqs—1)and v = (vo, . ..,vq—1) then the general term wy, of w = uw is
wp, = E UiVt —j h—j-
0<i,j<d

Example 11.40 The following is taken directly from [OMMA 1986]. Let o be a zero of m(X) =
X7+ X6 + 1. The next equalities are computed mod m(X).

a=X a?=X?

o2 = x4 o = XS4 X +1

o2 =X XP 4 Xty X34 X o = XS X4 X2 X +1
26 4 3 o

o =X"+X"+1 a® = a.

The products a9 x « are

axa=X? o’ xa=X3
a22xa:X5 a23xa:X6+X2+X+1
o xa=X"+ X4+ X241 o xa=X+ X+ X34 X2+ X

26 _ 5 4
o xa=X"+X"+X.
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From this and in order to obtain 7y, one introduces the matrix

00010110001 100
10011100001 011
0100010/100111°0
M=[100001010100010
0010111]0000101
000011000101 11
10001100/00010T10 |

where the first and last seven columns give respectively the expression of o and of a4 x « on
the basis 1, X, ..., X5. To get the identity matrix in the left part of M one performs a Gaussian
elimination, which gives at the same time the transposed matrix of Ty in the right part of M. Hence

0100000
1101110
0001101
Ty=[0101000
1000010
0110100
(1011101

. . . 3 4 5
From this matrix, one deduces for instance that o? x o = a + o2 + a2 + a? +a?’.

The number of nonzero coefficients of the matrix 7T is denoted by Jxr and called the density of
T). It is a crucial parameter for the speed of the system since the multiplication of two elements in
[F,a can be computed with at most 2d 6, multiplications and d(dx- — 1) additions in IF,. On average
the density is about (¢ — 1)d?/q [BEGE™ 1991] but in fact 65 > 2d — 1 [MUONT 1989] and this
bound is sharp. By definition, an optimal normal basis, cf. Section 11.2.1.c, has such a minimal
density.

Concerning Fya, recall that a multiplication in a Type I ONB can be in fact performed in the
corresponding anomalous basis. There is a simple way to transform an element into a polynomial
and computations are made modulo X**t! — 1. For Type II ONB, there is a similar idea called
palindromic representation [BLROT 1998]. The situation is not as favorable as for Type I ONB
since in this case computations must be made modulo X 24+ — 1. Optimal normal bases of Type I
and II appear as special cases of Gauf} periods, cf. Section 2.3.3.b.

11.2.3 Squaring

Squaring is a trivial operation for extensions of 5 in normal basis representation and it is very
simple in polynomial representation. The absolute Frobenius X +— X2 being a linear map, one sees
that if u(X) = > u; X then u?(X) = 3" u; X?'. Thus, this operation is nothing but inserting 0
bits in the internal representation of u and reducing the result modulo m(X). Precomputing a table
of 256 values containing the squares of each byte allows us to speed up the 0-bit insertion process.
However, the reduction remains the most time-consuming part of the whole process.

To speed up this process a bit, it is possible to split the square Y u;X? into an even and an
odd part so that the number of required bitwise-XOR operations to actually perform the reduction is
halved. See [KIN 2001] for details.
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11.2.4 Inversion and division

There are mainly two ways to compute the inverse of an element o € Fga. The first method
is to perform an extended gcd computation of the polynomial representing o and the irreducible
polynomial defining F . Alternatively, one can exploit the multiplicative structure of the group
F;d with Lagrange’s theorem. This is especially useful for normal bases.

11.2.4.a Euclid extended gcd

Given two nonzero polynomials f and m in F,[X], there are unique polynomials u, v, and g such
that fu + mv = g where g = ged(f, m), degu < degm, and degv < deg f. In case m is
irreducible and deg f < degm we have g = 1 so that u is the inverse of f modulo m. The
following algorithm returns u, v and g.

Algorithm 11.41 Euclid extended polynomial gcd

INPUT: Two nonzero polynomials f, m € Fq[X].
OUTPUT: The polynomials u, v, g in Fy[X] such that fu + mv = g with g = ged(f, m).

1. u+—lLv<—0,s<mand g« f
while s # 0 do
compute Euclid division of g by s [g=gqs+7]
t—u—vqu<—v,g<+s,v<tand s<r
v (9= fu)/m

return (u,v,g)

[ T

Remark 11.42 Assuming deg f < d and degm < d, Algorithm 11.41 requires O(d?) elementary
operations in F,,.

Example 11.43 Take m(X) = X" + X2+ land f(X) = X® + X6 + X° + X + X + 1.
Algorithm 11.41 proceeds as follows

| q r U v g ‘

(0000)  (000101110011) (0000) (0001) (10000000 0101)

(1011) (1000) (1011) (00010111 0011) (00010111 0011)
(00101110) (0011) (1011) (0001 00000011) (1000)
(0111) (0001) (000100000011) (011100000010) (0011)
(0011) (0000) (011100000010) (100000000101) (0001)
— — (011100000010)  (11001011) (0001)

One deduces that (X0 + X9 + X8 + X)) f(X) 4+ (X" + X® + X® + X + 1)m(X) = 1 which
implies that X0 + X% 4+ X® 4+ X is the inverse of f(X) in F2[X]/(m(X)).
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11.2.4.b Binary inversion

For extensions of Fy, there is also a dedicated algorithm inspired by the binary integer version
[BRCU™T 1993].

Algorithm 11.44 Inverse of an element of I[F, in polynomial representation

INPUT: An irreducible polynomial m(X) € F2[X] of degree d and a nonzero polynomial f(X) €
F2[X] such that deg f < d.
OUTPUT: The polynomial u(X) € F2[X] such that fu =1 (mod m).

u+—1,v—0,s«<m and § — 0

for i=1 to 2d do

if f4 =0 then [f(X)Zded+~~~—|—fo}
f(X) — Xf(X), u(X) «— (Xu(X)) mod m(X) and § — 6+ 1

else
if sg =1 then [S(X)ZSdXd+...+SO}

return u

s(X) « s(X) — f(X) and v(X) «— (v(X) — u(X)) mod m(X)
s(X) — Xs(X)
if § =0 then

t(X) — f(X), f(X) < s(X) and s(X) « ¢(X)

t(X) — u(X), u(X) — v(X) and v(X) «— t(X)

u(X) «— (Xu(X)) mod m(X)

0«—1
else

u(X) — (u(X)/X) mod m(X) and § — 6 —1

Remarks 11.45

(i) The operations (Xu(X)) mod m(X) and gu(X)/X) mod m(X) can be very effi-

ciently performed if X mod m(X) and X ~

mod m(X) are precomputed.

(i) Algorithm 11.44, unlike other binary gcd versions (see [HAME™ 2003] for instance)

does not require any degree comparison thanks to the use of the counter §. This idea
was first suggested by Brent and Kung for modular inversion (see [BRKU 1983] and
Section 11.1.3.a) and gives good performances in both software and hardware.

A similar algorithm testing least significant bits instead of most significant bits has been
recently proposed [WUWU™ 2004].

It is possible to directly obtain (h(X)/f(X)) mod m(X) by setting u(X) «— h(X)
instead of w «— 1 in the first line of Algorithms 11.41 and 11.44. In this case, a reduction
is almost always needed at the end when the first algorithm is used, whereas the result
is already reduced with the second one.
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Example 11.46 With the values of Example 11.43, the successive steps of Algorithm 11.44 are

‘ i ‘ U v S 0 ‘
1 (0010) (0000) (100000000101) 1
2 (0100) (0000) (100000000101) 2
3 (1000) (0000) (1000 00000101) 3
4 (0100) (1000) (1110011 1010) 2
5 (0010) (1000) (111001110100) 1
6 (0001) (1010) (10111101 1000) 0
7 (0001 0110) (0001) (10111001 1000) 1
8 (0010 1100) (0001) (10111001 1000) 2
9 (0101 1000) (0001) (1011 1001 1000) 3
10 (1011 0000) (0001) (10111001 1000) 4
11 | (0001 0110 0000) (0001) (10111001 1000) 5
12 (1011 0000) (000101100001) (01110011 0000) 4
13 (0101 1000) (000101100001) (111001100000) 3
14 (0010 1100) (00010011 1001) (11001100 0000) 2
15 (0001 0110) (00010001 0101) (1001 1000 0000) 1
16 (1011) (0001 00000011) (0011 00000000) O
17 | (0010 0000 0110) (1011) (1000 0000 0000) 1
18 | (0100 0000 1100) (1011) (1000 0000 0000) 2
19 | (001000000110) (010000000111) (100000000000) 1
20 | (0001 00000011) (011000000001) (10000000 0000) O
21 | (011000000001) (0001 00000011) (110000000000) 1
22 | (0111 00000010) (0111 00000010) (10000000 0000) O

and the final result is the same, that is, the inverse of f(X) is X044 X94 X84+ X,

11.2.4.c Inversion based on Lagrange’s theorem

It is also possible to use the group structure of F;d to get the inverse of an element ov. This method
has the same asymptotic complexity as the extended Euclidean one but is reported to be a little faster
[NOC 1996] when a squaring is for free. We know that |IE‘* | = ¢% — 1 with ¢ some power of 2, say
q=2F Soat'~ 2 = 1/a. Now

¢ —2=(¢""-1)g+q-2,

and we can take advantage of the special expression of ¢~ —1 in base ¢ and of the Frobenius, which
makes the computation of ¢-th powers easier. For better performance, addition chains, presented in
Section 9.2.3, are used as well.

Algorithm 11.47 Inverse of an element of F;d using Lagrange’s theorem

INPUT: An element a € ]F;d, two addition chains, namely (ao,a1,...,as,) for ¢ — 2 and
(60,61,... bs )ford—l

OUTPUT: The inverse of o i.e., a?" ~2 = =1/

1. y—al? [using (ao, a1, ..., as, ) and Algorithm 9.41]
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2. T0]—axyand i1

3. while 71 < s do

. t — T[k]*" where b; = by + b;

5. Tli] — t x T[j] [T[i] = a?" " forall z]
6. 1— 141

7.t T[sq] [bsy, =d — 1]

8. return yt?

Remarks 11.48

(i) Note that exchanging by, and b;, in Line 4, does not alter the correctness of the algorithm.
In factbit is better to force by, to be the maximum of by, and b; so that the exponentiation
T[b]?” is simpler.

(i) One can obtain the inverse of a € F o with s; + so + 2 multiplications in [F s and
(143, ;) g-th power computations where b; is the integer in b; = by, + b;. This last
number is equal to d — 1 when (bg, b1, . . . , bs, ) is a star addition chain, cf. Section 9.2.1.

(iii) One of the three methods proposed by Itoh and Tsujii [ITTS 1988] is a special case of
Algorithm 11.47 when ¢ = 2 and the addition chain computing d — 1 is derived from
the square and multiply method.

(iv) When ¢ is bigger than 2, another option suggested by Itoh and Tsujii is to write ™+ as
a" xa"twherer = (¢¢—1)/(g—1)=q* 1+ -+ q+1. Asa” € F,, it can be
easily inverted. It is the standard way to compute an inverse in an OEF, cf. Section 11.3.

1

Example 11.49 Suppose that one wants the inverse of a € o190, that is a2, Obviously, one has
219 — 2 = 2(218 — 1) and an addition chain for 18 is (1,2, 3,6, 12, 18).

i b = b+, T < TY) T |
0 1 — «@

1 2=1+41 T[0' x T[0] o’ x a=a®

2| 3=241 T[> % T0] o’ x o =a’

3 6=3+3 TE2¥xT[2 a™® x o =af?
4112=6+6 TR x T[3] a6 x o* = (409
5|18 =1246 TH*x T[3] a0%5%64 x o6 = o*'°~1

Finally 7[5 = o~ .

11.2.5 Exponentiation

In polynomial representation, a simple trick can greatly speed up exponentiation. Namely, let f(X),
m(X) be polynomials in F,[X] and g(X) = X9 . Because of the Frobenius action, it is obvious
that f9° = f(g) (mod m). At this point one uses a fast algorithm for modular composition de-
signed by Brent and Kung [BRKU 1978].
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The idea, a la baby-step giant-step, is to write

fX)= > XMF(X) withk = [deg f]and F;(X) = > firp; X’
0<i<k 0<j<k

and to precompute and store 1, g,¢2,...,¢"* ' and 1, g*, g%*, ... , ¢"*=1) modulo m. Here is the
complete algorithm:

Algorithm 11.50 Modular composition of Brent and Kung

INPUT: The polynomials m, f, g € Fq[X] with degm = dand deg f,g < d.
OUTPUT: The polynomial f(g) mod m.

1. ke [Vd]

2. G0] <1

3. for i=1 to k do G[i] — (¢G[i — 1]) mod m [G[i] = ¢" mod m]
4. Pl0]—1

5. fori=1 to k—1 do P[i] — (G[k]P[i — 1]) mod m [P[i] = g*" mod m]
6. fori=0 to k—1do Fli] — "} firs;Glj) [F[i] = Fi(9)]
7. R« (XF) Fli|P[i]) mod m

8. return R

Remark 11.51 With classical arithmetic the complexity of Algorithm 11.50 is O(d°/2), but it can
be reduced to O(d'/?>*183). Indeed, as shown in [NOC 1996], the loop in Line 6 can be computed
with fast matrix multiplication a la Strassen [KNU 1997] and the other multiplications with the
Karatsuba method.

Example 11.52 Let m(X) = X%+ X + 1 irreducible over Fo, f(X) = X1+ X134 X8 4 X6
X4+ X3 +1and g(X)= X'+ X3+ 1. One has k = 4 and

f(X) = Fo(X)+ X*F1(X) + X3 (X) + X2 F3(X)

with

Fo(X)=X34+1,F(X)=X?+1,F(X)=1and F3(X) = X*> + X.
The precomputed values g* and g** for 0 < i < k are respectively stored in the arrays G and P
whereas F'[i] contains F;(g).

i Gli] Pli] FIi] |
0 (0001) (0001) (01010100 1011)
1{ (01000000 1001) (010000000001) (0010 0000)

2 (00100001) (01100001) (0001)
3[(010100101010) (010001100100) (01000100 1000)

Finally R = X 13 + X2 4 X1 4+ X%+ X7+ X° 4+ X3 + X2+ X + 1 which is equivalent to f(g)
modulo m.

Now we present Shoup’s algorithm [SHO 1994a, GAGA™ 2000] which is mainly based on the ¢"-
ary method for a well chosen 7.
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Algorithm 11.53 Shoup exponentiation algorithm

INPUT: The polynomials f,m € Fq[X] with degm = d and deg f < d. A parameter r and an

exponent n = (n¢—1...M0)qr suchthat0 < n < g%

OUTPUT: The polynomial /™ mod m.

1. for i =0 to ¢ — 1 precompute and store f™* mod m

g(X) — X9 modm and y — 1
for i =/ —1 downto 0 do

y < y(9)
Y — (y X f"l) mod m

S T

return y

[use Algorithm 11.50]

Remarks 11.54

(i) The parameter r is usually set to [d/ log, d| and the precomputations can be done with

Yao’s method, cf. Algorithm 9.44, as proposed by Gao et al. [GAGA™ 2000].

(i) Neglecting precomputations, the number of multiplications needed is O(d/lgd). Its
complexity, including the cost of precomputations, is O(d®/lgd + d?1g d) with clas-
sical arithmetic and O(d'+'83/1gd + d(*+187)/2 1g d) with Karatsuba method and a la

Strassen matrix multiplication techniques for modular composition.

(iii) The number of stored values is O(d/1g d).

(iv) The for loop starting Line 3 is a Horner-like scheme.

Example 11.55 Take g = 2, m(X) = X P+ X +1, f(X) = XM+ X B X84 X0 4 X4 4 X341
and n = 23801. Let us compute ™ mod m with Algorithm 11.53. One has r = [15/1g15] = 4,
23801 = (512159)16,and g(X) = X2+ X (mod m(X)). Then foreachi, y(g) = y*® (mod m)
and (y f ”) mod m are successively computed. In the following table, we give the corresponding
values of y after the execution of Lines 4 and 5 of Shoup’s algorithm, as well as the precomputed

values ™ used at each step.

i y

fm mod m ‘

3
(0001 1001 0011 1000)
(01101001 0111 1000)
(00101001 1001 0000)

1 (011100111101 0010)
(01000101 0111 1110)
(001110001101 1010)
(000101110001 0101)

(0001 1001 0011 1000)

(10011101 1100)

(0111010000000011)

(010000010111 0011)
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11.2.6 Square roots and quadratic equations

Every element o € Foa is a square. The square root of « can be easily obtained thanks to the
multiplicative structure of I, which implies that \/ar = o' In a normal basis the computation
of a square root is therefore immediate. If o is represented by f(X) =5 1;()1 fi X on a polynomial
basis, it is better to write

VI =Y x4 vx Y px s

7 even i odd

where v/X has been precomputed modulo (X ). When m(X) is the irreducible trinomial X ¢ 4
X% + 1 with d odd, note that /X can be obtained directly. Indeed

VX=X 4+ X7 (mod m(X))

if kisoddand VX = X% (X% +1) (mod m(X)) otherwise. This technique applies to redun-
dant trinomials as well; see Section 11.2.1.b.

Solving quadratic equations in Fya is not as straightforward as computing square roots. Indeed,
let us solve the equation T2 +aT+b=0in Fya where, by the above, a is assumed to be nonzero.
The change of variable T' +— T'/a yields the simpler equation

T? + T = ¢ with ¢ = b/a®. (11.2)

Lemma 11.56 Equation (11.2) has a solution in Fya if and only if Tr(c) = 0. If 2 is a solution then
x + 1 is the other one.
When d is odd, such a solution is given by

r= Y & (11.3)
When d is even, set
d-1/ i )
T = <ZCQJ>yQL (11.4)
where y € Foa is any element of trace 1.

Proof. Let x be a solution of (11.2). Then Tr(c) = Tr(z? + ) = Tr(x) + Tr(z) = 0. The opposite
direction is proved by showing that the proposed solutions actually work. Computing z? + x, one
has in the first case

2?4+ =c+Tr(c) =c

and in the second one
22+ 2 =yTr(c) +cTr(y) = c.

Thus x is always a solution of (11.2) as claimed. [l

In practice, several improvements can be considered. First, to check for the existence of a solution
and then to actually compute such a solution.
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Remarks 11.57

(i) There is a unique vector w in Fya that is orthogonal to all the elements of trace 0. If w
is precomputed, it is enough to compute the scalar product w - ¢ in order to deduce the
trace of ¢ [KNU 1999].

(ii) When the field Fy. is defined by an irreducible polynomial of the form
X7+ ad,le_l +-- 4+ a1 X +ap with a; =0 forall j > d/2 (11.5)

the trace of an element can also be obtained very efficiently.

Let 6 be a root of this polynomial. Then using the Newton—Girard formula giving the
sum of the conjugates of 6% in terms of the a;’s and the linearity of the trace map it is
immediate that

d—1 d—1
if ¢c= chﬁk then Tr(c) = co + Z keraq—p.
k=0 k=1

As we have seen, moderately large extension fields of characteristic 2 can always be
defined by trinomials or pentanomials of the form (11.5), so that the computation of the
trace is always simple in practice.

Example 11.58 In [Fy233 defined by X233 + X7 4+ 1 we have
Tt (c2320%% + €2310%%" + -+ + €10 + ¢p) = co + ciso.

Remark 11.59 Rather than computing a solution using (11.3) or (11.4), it can be faster to use the
linearity of the map A ~— A2 + \ defined from Foa to Fos. Indeed, precomputing the inverse matrix
of this operator gives the result in a straightforward way. Additional tricks can be used to reduce the
storage and the amount of computations [KNU 1999].

11.3 Optimal extension fields

On the one hand, multiplications in extension fields of characteristic 2 are usually performed less
efficiently than in prime fields, due to the lack of a single precision polynomial multiplication on
most processors. On the other hand, inversion in prime fields can be a very expensive operation,
especially in hardware. To overcome these two difficulties, optimal extension fields have been
recently investigated [MIH 1997, BAPA 1998]. They seem to be particularly interesting for smart
cards [WoBA™ 2000].

First, we shall briefly introduce optimal extension fields, and give existence criterions and some
examples before addressing the arithmetic itself. We conclude with the special cases of extensions
of degree 3 and 5.

11.3.1 Introduction
Let us take an extension field ]de such that

« the characteristic p fits in a machine word and allows a fast reduction in I,
+ the irreducible polynomial defining IF,,« allows a fast polynomial reduction.

This choice leads to the following concept.
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Definition 11.60 An optimal extension field, OEF for short, is an extension field F,« where

o p is a pseudo-Mersenne prime, that is p = 2™ + ¢ with |¢| < 2ln/2]
« there is an irreducible binomial m(X) = X¢ — w over FF,,.

If ¢ = = 1 then the field is said to be of Type I and it is of Type II when w = 2.

Remark 11.61 Generalizing Definition 11.60, cf. [AVMI 2004], it is possible to consider a prime p
of another form provided a fast reduction algorithm exists; see Section 10.4.3 for examples.

The cardinality of IF,,« is approximately equal to 274 and in practice, an element o € I a is repre-
sented by the polynomial ag_1 X%~ + -+ + a1 X + ag where a; € F,. As suggested before, this
implies that computations in OEFs require two kinds of reduction. Intermediate results have to be
reduced modulo the binomial m(X ), and for this task Algorithm 11.31 is not even required since a
reduction modulo m consists simply of replacing X ¢ by w. Coefficients of the polynomial also have
to be reduced modulo p. For Type I OEF, this operation needs one addition in IF},, cf. Section 10.4.3.
Otherwise reduction is obtained by Algorithm 10.25 and is more expensive.

OEFs are rather easy to find and their search is simplified by the results below on the irreducibility
of X — w over F,.

Theorem 11.62 Letd > 2 be an integer and w € FF;. The binomial m(X) = X —wis irreducible
in F,[X] if and only if the two following conditions hold

« each prime factor of d divides the order e of w but does not divide (p — 1) /e
e p=1 (mod 4)ifd =0 (mod 4).
As shown in [JUN 19g3] one has the sufficient condition

Corollary 11.63 If w € F; is a primitive element and d | (p — 1) then the polynomial X — w is
irreducible over IF,.

If d is squarefree and X ¢ — w irreducible over IF,, then Theorem 11.62 implies that p = 1 (mod d).
This remark is also useful to speed up the search of OEFs.
In Table 11.2 are given all OEFs of Type I, of cryptographic interest sorted with respect to nd.

Table 11.2 Type | OEFs.

n ¢ dw nd n ¢ dw nd n ¢ d w nd n ¢ d w nd
13 -1 6 7 78 17 -1 3 85 183 -1 7 3 9N 31 -1 3 5 98
7 -114 3 98 17 -1 3 102 19 -1 6 3 114 18 -1 9 7 117
7 -1 18 3 126 8 116 3 128 16 1 8 3 128 183 -1 10 3 130
19 -1 7 3 133 7 -1 21 3 147 17 -1 9 3 153 13 -1 13 2 169
17 -1 10 3 170 19 -1 9 3 171 13 -1 14 3 182 61 -1 3 5 183
31 -1 6 5 186 7 -1 27 3 189 18 -1 1511 195 31 -1 7 3 217
13 -1 18 7 234 17 -1 15 3 255 8 132 3 256 16 1 16 3 256
19 -1 14 3 266 13 -1 21 7 273 31 -1 9 5279 17 -1 17 2 289

Table 11.3 contains examples of OEFs of Type II. More precisely, given a size s between 135 and
300, for each n > 7 dividing s, the unique parameters ¢ € [—20"/2] oln/ 2” and d, if any, are
given, such that
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o p=2" 4 cisprime
« cis minimal in absolute value
« d=s/nand X% — 2 is irreducible over F,,.

Note that when n = 8,16, 32, or 64 only negative values of ¢ are reported so that elements of [,
can be represented with a single word on the corresponding commonly used architectures. Since
these parameters are of great importance in practice, they appear distinctly in the table.

Concerning arithmetic, additions and subtractions are straightforward and do not enjoy special
improvements, unlike other basic operations we shall describe now.

11.3.2 Multiplication

Let two elements a, § € F,a be represented by v = 3" ' a; X7 and 5 = 30" b; X* where a;

and b; are in IF,,. Then using the relation X¢ = w (mod m(X)), one has

d—2 k
afl =cqg_1+ Z(Ck + wcd+k)Xk with ¢ = Z a;ibi_;.
k=0 i=0

Instead of reducing a;by;_; modulo p at each step, it can be faster, especially for OEFs that are not
of Type I, to compute ci + wcqk as a multiprecision integer and to reduce it only once. As shown
in [HAME™ 2003, if p = 2™ + c is such that lg(l +w(d— 1)) +21g|c| < n, then ¢ + weg4k can
be reduced at once with only two multiplications by c.

As suggested in [MIH 2000], one can also use convolutions methods, like the FFT, to multiply «
and (. This is particularly effective when d is close to a power of 2, or close to the product of small
primes.

As usual, a squaring should be considered independently and computed with a specific procedure.

11.3.3 Exponentiation

The action of the absolute Frobenius ¢, can be computed very efficiently in OEFs [MIH 2000].
Indeed, since the coefficients of o« = Z?;& a; X7 are in IF),, one has

d—1
apl — Zajwljpl/dJX((jp’) mod d,).
=0

Recall that when d is squarefree, p = 1 (mod d) so that X ((UP)" modd) jg simply X7, Thus an
exponentiation to the power p’ only requires us to multiply each coefficient a; by some power of w,
which can be precomputed. v

Another interesting choice is to take p = kd + 1 for a given d. In this case, X ((77") mod d) — xj
as well, and wliP/4) = (7 where ¢ = w*T € FF,, is a d-th root of unity.

Example 11.64 Let p = 26 — 165, F 6 ~ F,[X]/(X° — 2) and take the random element
o = 44048 X° + 24430 X" 4 54937X° 4 18304 X% 4 46713 X + 63559.

One checks thatp — 1 = 0 (mod 6) so that { = olp/d] js a 6-th primitive root of unity. Precomput-
ing ¢, ¢?, ¢, ¢* and ¢° modulo p, and multiplying a; by ¢/, one obtains

aP = 23814X° + 34492 X* 4+ 10602X> + 7340 X2 + 40911 X + 63559.

Using the same set of precomputations, the product of a by the (*/°s, componentwise gives

oP" = 41725 X7 4 34492 X" + 54937 X3 + 7340 X2 + 24628 X + 63559.
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Table 11.3 Examples of Type Il OEFs.

ncdndncdnd|ncdnd|ncdnd|ncdnd|ncdndncdnd

15 -19 913527 203 5135(45 -55 3135|17 29 8136|34 85 4136(23 11 6138|46 —-21 3138
10 271414014 -310140(20 -3 7140|28 -95 5140|35 53 414047 5 314111 -1913143

9 -316144|12 -312144(16 —-15 9144 |18 —-11 8144 |24 75 6144|36 117 414448 75 3144
29 39 514521 -21 7147|149 -139 314737 29 4148|15 31015025 35 615030 7 5150
50 -51 3150119 -19 8152|38 13 415217 —-13 915351 65 3153|14 -1511154|22 -57 7154
31 413 515512 -3913156|13 2912156|26 -45 6156|39 -19 4156|52 21 3156|53 41 3159
10 -316160|16 -16510160 |20 -3 816032 -5 5160 (40 141 4160|238 11 7161 9 1118162
18 3 916227 53 6162|54 -33 316241 -75 416415 3511165|33 29 5165|55 11 3165
14 -312168 |21 -19 8168 (24 -63 7168|28 3 616842 -11 4168|566 -57 316813 —113169
10 -8317170|17 -6110170|34 -113 517019 -19 9171 |57 -13 317143 29 4172|129 -43 6174
58 -63 3174 7 32517525 41 7175|35 53 5175 11 51617622 -3 8176|44 21 4176
59 -55 317712 151518015 -1912180|18 -9310180(20 -3 9180|30 3 6180(36 -5 5180
45 -139 418060 33 3180| 7 326182 |13 2714182|14 -313182|26 -45 7182|61 -31 3183
23 -27 8184 |46 165 4184 |37 9 5185(31 11 618662 -57 3186 |17 -6111187|47 5 4188
21 -19 918927 203 7189|63 —-25 318919 -2710190 |38 7 519012 -316192|16 —243 12 192
24 -3 8192|132 -387 619248 21 4192|64 -189 3192 |13 291519515 7113195|39 23 5195
14 -314196|28 -57 719649 69 4196 11 518198 | 18 91119822 -3 919833 29 6198
10 -320200/20 -510200(25 69 8200|40 15 520050 -27 420029 -3 7203|17 2912204
34 -165 6204 |51 21 4204|41 -21 5205|233 11 920713 2916208|16 -1513208 |26 -27 8208
52 21 4208\ 11 51920919 -2711209|10 -1521210(14 -315210|15 211421021 -2110210
30 7 721035 53 621042 -33 521053 5 4212|143 -67 5215| 8 -1527216 |12 318216
18 1171221624 -33 9216(27 29 8216|36 117 6216|54 —-131 421631 -85 7217|20 3311220
22 6710220144 55 5220|55 -67 422013 -3117221|17 -3113221|37 269 6222|14 -316224
16 —15514224 | 28 37 8224 |32 —17 7224 |56 -27 4224| 9 925225|25 35 922545 59 5225
19 -1912228 |38 -45 6228 (57 141 4228|10 -1123230|23 -2710230(46 127 523021 —111 11 231
33 35 7231129 -3 8232|58 -27 423213 -1318234 (18 -1113234|26 15 9234|39 -91 6234
47 —127 5235|59 -99 4236|17 -11514238 |34 -113 7238 |15 -1916240|16 -1515240|20 -312240
24 751024030 -35 8240|40 141 6240|48 —-165 5240 |60 —107 4240|111 212224222 8511242

9 1127243127 53 924361 21 424435 -31 7245|49 69 5245|41 -133 624613 1719 247
19 811324731 -19 8248 |62 -171 4248 |10 -325250(25 -6110250|50 -113 525012 6321252
14 -318252 |18 -3514252 |21 -1912252|28 3 925236 175 7252|42 75 625263 29 4252
23 1511253 |17 -6115255|51-237 525516 -9916256 (32 -99 8256 |64 —-59 4256 |43 -691 6258
37 41 725913 2920260|20 5713260(26 11710260|52 55 5260| 9 112926129 -43 9 261
11 524264 |12 -322264|22 -312264|24 7311264|33 29 826444 21 6264|53 -111 5265
14 3319266 |19 -8514266 (38 —-45 7266|10 92727015 -1918270|18 87 15270|27 20310270
30 3 9270|45-139 6270|54 -33 527016 —-1717272 (17 2916272|34 85 827213 4121273
21 -6913273 |39 -7 7273|25 351127555 3 5275|12 -4723276|23 2912276|46 -21 6276
31 11 927914 -320280|20 -314280|28 -12510280|35 53 8280(40 27 7280|56 175 5280
47 5 628215 -4919285|19 -6715285|57 —111 528511 -1926286|22 -8713286|26 69 11286
41 -31 7287 9 -332288|12 -324288|16 -16518288 |18 —-1116288|24 1171228832 -153 9 288
36 117 828848 75 6288|17 —-117289|29 14910290|58 -63 5290|14 —-321294|21 -2114294
42 -161 7294|149 -139 6294 |59 273 529537 29 8296 |11 52729727 -3911297|33 17 9297
23 29313299 |12 -525300|20 4351530025 7712300(30 -8310300|50 -51 6300|60 105 5300
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Accordingly, the use of the Frobenius speeds up an exponentiation to a generic power n. Indeed,
a traditional approach would require d1g p squarings to get o™, but writing n in basis p, i.e., n =
(ng—1...ng)p, it is clear that

-1
a = H ¢;(a""’).
i=0

Combined with a right-to-left strategy to compute the a™’s, lcf.§ecti0n 9.1.1, this idea shows that
only (Igp — 1) squarings are needed, namely o, o, ..., a®*" . In addition, each term o can

be computed in parallel.

Example 11.65 Let n = 27071851865689547117393862889 and let us compute ™. First remarllg
thatn = (2238812209 20770 63238 8078 10838),.. Using the precomputed values a2, o4, . . ., o ’
Algorithm 9.2 gives

= 13812X° 4+ 61164X* + 49159X" + 1927X2 + 1781X + 31944

o

Q™ = 4807X° + 57203X* + 62178 X% + 3283 X2 + 4690X + 33266

Q™ = 49155X° 4+ 5527X" + 47396 X% + 13274 X7 + 13828 X + 60304

Q™ = 21607X° + 11848X™ + 23310X° + 30303X? 4 31752X + 44845

a™ = 29730X° 4 12285X* + 27469X> + 798X ? 4 9947 X + 47295

a™ = 547T10X° +18029X" + 18950X° 4 23518 X 4 10120X + 34955

and with the technique explained above one obtains
Q™ = 13812X° +61164X"* +49159X° 4+ 1927X% + 1781 X + 31944

o’ = 60618X° +51323X* +3361X° 4 4138X > + 57415X + 33266
a”’™ = 8288X° 4 43479X* + 47396X° + 53960X2 + 58194X + 60304
a”’"3 = 43032X° 4+ 11848 X* + 42229 X7 1 30303 X2 + 33787X + 44845
aP'™ = 46496X° 4+ 26171 X* + 27469 X > + 28535X2 + 55771X + 47295
a”’" = 37148X° 1 9908X* + 46589X° + 49200X2 + 55179X + 34955

so that the product of all these values is
o =42336X° + 42804X " + 21557X > + 49577X 7 + 22038 X + 4278.

11.3.4 Inversion

Although an inverse could be computed with an extended ged computation in [Fa, it is much faster
to use the Frobenius action and an inversion in [F), to compute it.
Namely, take
p’ -1
r= =p" 4P p L

p—1
Then o"~! and o" are easily obtained using the Frobenius and in addition o” € [, since it is the
norm of a. So " can be easily inverted to obtain

at=a""1xa™.

Further improvements, reminiscent of an addition chain approach, can be applied to compute the

term o ~'. As an example, let us consider the extension degree d = 6, often used in practice with

32-bit architectures. In this case, the successive steps to compute " ~! are

3 2 5 4 5 4 3 2 5 4 3 2
ap7ap+17ap TPT QP TP P TP APTEPT and o TP HPT AP AP,

The entire algorithm is as follows.
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Algorithm 11.66 OEF inversion

INPUT: A nonzero element o € de,.
OUTPUT: The inverse of ain I ,a.

Lor— @' -1)/(p-1)

2. s—a [use an addition-chain-like approach]
3. ¢+ so [t=a" €y
4. ue—t! [compute the inverse of ¢ in )]
5. return su

Remarks 11.67

(i) Algorithm 11.66 is in fact a generalization of a method proposed by Itoh and Tsujii
[ITTs 1988] for characteristic 2 fields. See also Remark 11.48 (iv).
(i) Since t belongs to IF,, it is equal to the constant coefficient of the product sc. Thus this
multiplication needs only d multiplications in IF), as does the product su.
(iii) Let v(k) be the Hamming weight of k, then a”~! can be computed [HAME™ 2003]
with Ny = |lgd — 1] + v(d — 1) — 1 products in F,« and at most Ny Frobenius
computations where

N. — Ny +1 if d is odd,
e = llg(d —1)] +v(d) otherwise.

Example 11.68 Take p, s and « as defined in Example 11.64 and let us compute the inverse of
a by Algorithm 11.66. First r = p° + p* 4+ p? + p? + p+ 1 and ! is obtained by computing
successively

of = 23814X° 4 34492X* + 10602X> + 7340X > + 40911X + 63559
aPTt = 27871X° 4+ 42246 X" + 20450 X3 + 8624 X7 + 26549X + 28414
o P = 47216 X5 + 11126 X% 4 20450 X% + 50936 X2 + 29251 X + 28414
o P = 55991 X7 4 12167X* 4+ 20450 X3 + 5979X2 + 9739 X + 28414
o PP 96086 X7 4 2404X* + 35019X° + 45382X2 + 45825 X + 22132
a" "t = 928310X° + 14778 X* 4 7889X3 4 29498 X2 + 2991 X + 44851

with 3 multiplications in F s and 3 applications of ¢,, or (;3127. Finally,t = " ta = 42318 (mod p),
u=t"!=27541 (mod p) and

o' =a "ty =33766X° 4 3708 X" + 9164 X + 48513 X2 + 58147X + 27858.

11.3.5 Squares and square roots

For any extension field Fa of odd characteristic, and not only for OEFs, there is a simple method
relying on Theorem 2.104 and very similar to Algorithm 11.19 to decide if an element of Fa is a
square or not.
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Algorithm 11.69 Legendre—Kronecker—Jacobi symbol

INPUT: A polynomial f(X) € F,,[X] and an irreducible polynomial m(X) € F,[X].

OUTPUT: The Legendre—Kronecker—Jacobi symbol (,{L(();()) )

1. k<1

2 repeat

3 if f(X)=0 then return 0

4 a « the leading coefficient of f(X)

5 F(X) = £(X)/a

6. if degm =1 (mod 2) then k «— k(%)

7 if p2°¢™ =3 (mod 4) and degmdeg f =1 (mod 2) then k — —k
8 r(X) «— f(X), f(X) «— m(X) mod r(X) and m(X) < r(X)

9. until degm =0

10. return k

Remark 11.70 Algorithm 11.69 relies on the law (2.7). Since f(X) is not necessarily monic it is
first divided by its leading coefficient a. Now we remark that a € [, is always a square in an
extension of even degree. When the degree is odd a is a quadratic residue if and only if a = 0 or

(5)=1.

Example 11.71 Take p = 7, let m(X) be the irreducible polynomial X9 4+ 2X8 + X7 + 2X6 +
2X5+4X24+6X +6and f(X) = X0+ X5+ 6X*+2X3+2X?%+4X + 1, both being elements
of F7[X].

After Line 8 the values of r, f, a and k are as follows

| r f a k
X0+ 4X5 43X+ X3+ X2 42X +4 4X5 43X +4X3+3X%* 42X +4 1 1
X% 46X+ X3 4 6X% +4X +1 4X3 +2X242X+6 4 1

X3 4+4X? +4X +5 2X2 43X 4 -1

X? 45X 2X 45 2 -1
X+6 6 2 -1
1 0 6 1

So f(X) is a square modulo m(X). Using a trivial generalization of Algorithm 11.26, one finds
that (3X% 4+ 6X? +2X +1)% = f(X) (mod m(X)).

To conclude this part, let us remark that the computation of the trace of an element in an OEF
enjoys the same kind of improvements as in characteristic 2, cf. Remark 11.57 (ii).

11.3.6 Specific improvements for degrees 3 and 5

For some applications, like the implementation of trace zero varieties, cf. Section 15.3, one needs
to work in an extension field IF,« of small degree d. In particular, d = 3 and d = 5 are interesting
there. Some specific tricks can be used to make multiplication and inversion more efficient.
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We use an explicit description of the field extension as F,a = IF,[#], where 6 is a root of an ir-
reducible binomial X% — w. Since d = 3 or 5 is prime, X 4 _ o is irreducible whenever p=1
(mod d) and w is not a d-th power in IF,,. As F,, contains a d-th root of unity ¢, the roots of X% — w
are 0,¢0,...,C%16.

Remark 11.72 It is very likely that there exists w of small integer value, which is not a d-th power.
In fact, by Cebotarev’s density theorem, we have with probability 1/d that p = 1 (mod d) and
X — 2 is irreducible over F,,. With even larger probability, one can find some small w such that
X9 — wis irreducible over [F,, and the multiplication by w, i.e., the reduction modulo the irreducible
binomial, can be computed by additions only.

We shall write all elements of I3, respectively IF,5, as polynomials in ¢ of degrees at most 2,
respectively 4, over [F),. Addition, subtraction, and negation of elements of F,. are performed
component-wise. If w is small we can ignore the costs of reducing modulo X¢ — w.

11.3.6.a Multiplication and squaring

Multiplication of elements of I, is split into multiplication of the corresponding polynomials in
and then reduction of the result using the fact that % = w.

Multiplication for d = 3

Multiplication in degree 3 extensions is done using Karatsuba’s method, which we detail here to
have the exact operation count. Let us multiply o = Z?:o a;0" with 5 = E?:o b;0". We have

af = agby + ((ao +ay)(bo + b1) — agbo — a1b1)9
+ ((ao + az)(bp + b2) — agby — azbs + a1b1)92 (11.6)
+ ((a1 + ag)(bl + bz) — a1b1 — a2b2)93 + (a2b2)94.
It enables us to multiply two degree 2 polynomials by 6 multiplications. By delaying all modu-

lar reductions and using incomplete reduction (see [AVMI 2004]), we need to perform 3 modular
reductions modulo p.

Multiplication ford = 5

In the degree 5 extension case, to multiply o = S a;f" with 3 = 1o b we put & = 6% and
let Ag = Z?:o a;0", A1 = a3 + a4, By = Z?:o b;0", and By = b3 + b4f. Karatsuba’s method is
then used to obtain

af

(Ao + A1€)(Bo + Bif)
= AoBo + ((Ag + A1)(Bo + B1) — AgBo — A1 B1)& + A1 B €2

The product Ay By is computed using Karatsuba’s method, and Ao By and (Ao + A1)(Bo + Bi)
are both computed using (11.6). Note, however, that having A, By of degree 2 and A;, By of
degree 1, the coefficients of #* in Ag By and (Ao + A1)(Bo + B1) are the same, so we can save one
F,-multiplication. The amount of F},-multiplications needed to multiply two degree 4 polynomials
is thus 3+ 2 X 6 — 1 = 14. By delaying all modular reductions and using incomplete reduction, we
need to compute just 5 modular reductions modulo p.

Squaring

The squarings are more efficiently carried out using the schoolbook method, since this reduces
the number of additions significantly and in several libraries, squarings in [F,, are no cheaper than
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ordinary multiplications. If this is not the case one should implement both versions (the schoolbook
version and the Karatsuba one) and compare their running time.
For d = 3, we need 3 squarings and 3 multiplications in F,, by

(ap + a10 + a26?)* = a2 + waias + (wa3 + apay)0 + (a3 + agaz)h?.

Likewise, for d = 5 we have 5 squarings and 10 multiplications. The number of modular reductions
are again 3 and 5 as in the case of multiplications.

11.3.6.b Inversion

For the inversion, the difference from the general OEF approach becomes obvious. To compute the
inverse of & € )4, we can consider the multiplication as a linear map and determine a preimage.
This method is faster for d = 3 and also for d = 2 but we do not investigate that case any further.
Note that for d = 5, the general method made explicit is faster.

Inversion ford =3

Let 8 = by + b16 + be6?, with by, by, by € F,, be the inverse of @ = ag + a16 + ax6? € F,s and
using #3 = w, the relation a3 = 1 can be written as:

ag asw aiw| |bg 1

ar ap asw| |by| =10

a9 aq ap b2 0

Hence
—1

bo ap Gow a1w 1 ag —waias
bi| = |a1r ay aow 0| = (ag +wad +w?ad — 3wagaraz) ! waj3 — apa;
b2 an ay ao 0 CL% — apag

From this formula we obtain a method for inverting elements in F,s, which requires (ignoring
multiplications by 3 and by w) just one inversion, 3 squarings, and 9 multiplications in IF),.
This method can be generalized to very small extensions. It is described e.g., in [KOMO™ 1999].

Inversion ford = 5

In this case we use the inversion technique described in Algorithm 11.66 but can save a bit by

combining the powers of the Frobenius automorphism, i.e., making the addition chain explicit.
Thus we compute the inversion in [F s as:

Note that if the result of a [F)s-multiplication is known in advance to be in [F;, (such as the norm), its
computation requires just 5 [F;,-multiplications. This way we compute inverses in [F s by one inver-
sion and 50 multiplications in IF,,. This strategy is optimal for d = 5 and needs less multiplications
than the generalization of the linear algebra approach used for d = 3.
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This chapter presents efficient algorithms to compute in the ring Z, of p-adic integers and the
valuation ring Z, of an unramified extension of Q,. Many of these algorithms were developed
specifically for the p-adic point counting algorithms described in Chapter 17, but are by no means
limited to this application. Although most of the lifting algorithms remain valid for more general
p-adic fields, we restrict ourselves to Z,, and Z, due to their importance for practical applications.

12.1 Representation

12.1.1 Introduction

Let Q, be the unramified extension of @, of degree d, then Proposition 3.21 implies that Q, can
be represented as Q,[X]/(M (X)) with M € Z,[X] of degree d such that m := Py (M) € F,[X]
is irreducible of degree d. Since degm = deg M, the leading coefficient of M is a unit in Z,,, so
without loss of generality we can assume that M/ is monic.

Let a € Q, be represented by Zj’;ol a; X" with a; € Q,, then the p-adic valuation v,, is given by
vp(a) = ming<;<qv,(a;) and the p-adic norm by |a|, = p~¥»(?). This implies that the valuation

239
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ring Zq of Qg can be represented as Z,[X]/(M(X)). Given a representation of the residue field
F, ~ F,[X]/(m(X)), there exist infinitely many polynomials M € Z,[X] with P, (M) = m. To
make reduction modulo m very efficient, m is usually chosen to be sparse.

In practice, one computes with p-adic integers up to some precision [V, i.e., an element a € Z,
is approximated by px (a) € Z/p™ Z and arithmetic reduces to integer arithmetic modulo p?. For
a given precision N, each element therefore takes O(N lg p) space.

This extends in a natural way to Z,: an element a € 7, represented as 27 o aiX t with a; € Z,
will be approximated by the polynomial Z o p n(a;) X" ‘ Computing in Z, up to precision [N thus
corresponds computing in (Z/pNZ)[X]/ (M ~ (X)), with My the polynonnal obtained by reducing
the coefficients of M modulo p”, i.e., My = Py(M). The space required to represent such an
element clearly is given by O(dN lgp).

Given a modulus m defining IF, there are two common choices for the polynomial M that speed
up the arithmetic in Z, : the first choice preserves the sparse structure of m, whereas the second
choice is especially suited in case an efficient Frobenius substitution is needed.

« Sparse modulus representation: Let m/(X) = Zf omi X" withm; € F, and mg = 1.
To preserve the sparseness of m, a first natural choice is to define M (X) = Zz o M; X'
with M; the unique integer between 0 and p — 1 such that M; = m,; (mod p). The
reduction modulo M of a polynomial of degree < 2(d — 1) then only takes d(w — 1)
multiplications of a Z,-element by a small integer and dw subtractions in Z, where w
is the number of nonzero coefficients of m.

« Teichmiiller modulus representation: Since IFy is the splitting field of the polynomial
X1 — X, the polynomial m divides X7 — X . To preserve the simple Galois action on
F,, i.e., p-th powering, a second natural choice is to define M as the unique polynomial
over Z, with M(X) | X? — X and M (X) = m(X) (mod p). Every root § € Z, of
M(X) clearly is a (¢ — 1)-th root of unity, therefore also () is a (¢ — 1)-th root of
unity, with ¥ the Frobenius substitution of Z,. Since ¥(0) = 67 (mod p), we conclude
that 3(#) = 6? or by abuse of notation X(X) = XP.

If the finite field F, admits a Gaussian normal basis, then Kim et al. [KIPAT 2002] showed that this
basis can be lifted to Zj.

Proposition 12.1 Let p be a prime and d, ¢ positive integers such that dt 4 1 is a prime not equal
to p. Let ~y be a primitive (dt+1)-th root of unity in some extension field of Q,,. If ged(dt/e, d) = 1,
with e the order of p modulo dt + 1, then for any primitive ¢-th root of unity 7 in Z/(dt + 1)Z

o=> " (12.1)

is a normal element and [Q,(¢) : Q,] = d. Such a basis is called a Gaussian hormal basis of type¢.

Elements of Z, are then represented in a redundant way by computing in the ring
ZplX] /(X —1).

For a given precision NN, each element therefore requires O(dNt1g p) space.

12.1.2 Computing the Teichmiiller modulus

In this section we provide all the details of an algorithm first sketched by Harley in [HAR 2002b],
to compute the Teichmiiller modulus of the defining polynomial of a finite field. Let § € [, be such
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that F, = F,[0] and let § € Z, be the Teichmiiller lift of 6, i.e., the unique (¢ — 1)-th root of unity
that reduces to 6. In the previous section we assumed that Z, was represented as Z,[X]/ (M (X ))
with M the minimal polynomial of 6. Since 6 is a (¢ — 1)-th root of unity, we have that X(6) = 6P
and M(X) = Hf;ol (X — 07"). Let (, be a formal p-th root of unity, then

p—1
M(xP) =[] M(¢x). (12.2)
1=0

Indeed, fori = 1,...,d — 1 each factor (X? — §7") of M (X?) splits as
(X0 )X 0 ) x —),

Write M as M (X) = Zf:ol M;(XP)X* with M; € Z,[X], then (12.2) can be rewritten as

p—1 /p—1 p—1
Mmxn =1] <Z (;;jMi(Xp)Xi> =3 hi(Mo(XP),..., My_1(XP)) X,

j=0 \i=0 k=0
with hy, € Z,[Yp, . .., Y,—1] homogeneous polynomials of degree p. This implies that M satisfies

M(X) = z_:hk(Mo(X), e My (X)) X
k=0

The following table lists the first few examples of the polynomials hy (Yo, ..., Y,—1).

| I |
2 [ ho = V2
hy = —Y?
3| ho=Y3
hi =Y — 3" Ya
hy = Y3
5| ho =Y

hy =Y + 5(YPY?Ys — YPY1Y) — YPYaYs + YY1 Y5 — YoY('Ya)

hy = Y3 + B(YFY2Y2 4+ YEYEY) + Yo Y2YE — VoY1 YaYsY, — VoY1 Y5
—YoY3Yy + YoY2YE — YPY3Yy + Y2Y2Y, + Y2YoY — Y1Y5Ys)

hsy = Y9 + 5(VY2Y? — YoY3Y}P — ViYaYP + +Y2Y3Y? — Yo Y3Y,)

hy =Y}

Assume we know M;(X) = M(X) (mod p*) and let 6;(X) = (M (X) — M;(X))/p". Substitut-
ing M;(X) + p*8;(X) in the equation

M(X)— i i (Mo(X), ..., Mp—1(X)) X =0
k=0

gives a relation that determines 6; modulo p?. For example, consider the case p = 2, which leads to

61(X) — 2(My,0(X)61,0(X) — XMy 1(X)6:,1(X)) + Vi(X) =0 (mod 2'), (12.3)
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with V,(X) = (Mt(X) My o(X)? 4+ X M;1(X)?)/2" (mod 2"). Assume we have an algorithm
to compute &; mod p* with ¢’ = [¢/2], then we can use the same algorithm to compute §; mod p'.
Indeed, substituting 6; = dp + p Y Ay in (12.3) leads to a similar equation modulo 2t=t" with &,
replaced by Ay and V; replaced by

Vi(X) + 00 (X) = 2(My 0(X)dp 0(X) = X My 1 (X)dp 1 (X))
2t
Since t — t’ < t’ we can use the same algorithm to find A and thus §;. This immediately leads to

Algorithms 12.2 and 12.3. Note that for odd extension degree d, Algorithm 12.2 returns — M, so in
this case a final negation is necessary.

mod 2071,

Algorithm 12.2 Teichmuller modulus

INPUT: A monic irreducible polynomial m € Fo[X] of degree d and precision N.

OUTPUT: The Teichmiiller lift M € Z2[X] up to precision N, i.e., M (X) | X2 — X mod 2V
and M (X) = m(X) (mod 2).

1. if N=1 then

2. M(X) < m(X) mod 2

3. else

o N [Y]

5. M’ (X) « Teichmiiller modulus (m, N”)

6. Mo(X?) — (M'(X)+ M'(—X))/2 mod 2V

7. Mi(X?) — (M'(X) — M'(-=X))/(2X) mod 2"

8. V(X) — (M'(X) = Mo(X)? + XM;(X)?) /2" mod 2V~
9. §(X) « Teichmuller modulus increment (Mo, M1, V, N — N’)
10. M(X) — M'(X) + 2V §(X) mod 2V

11.  return M(X)

Algorithm 12.2 relies on a procedure called the Teichmiller modulusincrement, which returns 0 in
Z2[X] such that

§(X) — 2(Mo(X)do(X) — XM1(X)61 (X)) +V(X)=0 (mod 2V). (12.4)

The algorithm is as follows.

Algorithm 12.3 Teichmuller modulus increment

INPUT: Polynomials Mo, M1,V € Z2[X] and a precision N.
OUTPUT: The polynomial § € Z2[X] as in (12.4)

1. if N =1 then

2. 0(X) «— =V (X) mod 2

3. else

o N [Y]

5. §'(X) « Teichmiiller modulus increment (Mo, M1, V, N')

o

§0(X?) — (6'(X) +6'(—X))/2 mod 27



§ 12.1 Representation 243

7. 51(X?) — (8'(X) X))/(2X mod 2N

N v < VX )+5 —2(Mo(X QN/ 50(X) = XM(X)3u(X)) 1 own
9. A(X) « Teichmiller modulus increment (Mo, M1, V', N — N')
10. §(X) — &'(X) + 2V A(X) mod 2V

11.  return §(X)

The complexity of Algorithm 12.2 is determined by the O(1) multiplications in Line 8 and the call
to Algorithm 12.3 in Line 9. The complexity of the latter algorithm is determined by the recursive
calls in Lines 5 and 9 and the O(1) multiplications in Line 8. If 7'(N) is the running time of
Algorithm 12.3 for precision N, then we have

T(N) < 2T([N/2]) + cTa,n,
for some constant ¢ and T y the time to multiply two polynomials in (Z/p™Z)[X] of degree

less than d assuming p is fixed. The above relation implies by induction that the complexity of
Algorithm 12.3 and thus also of Algorithm 12.2is O(Ty n 1g V).

Example 12.4 Let Fos ~ Fo[X]/(m(X)) with m(X) = X® + X%+ X3 + X2 4 1, then on input
(m, 10) Algorithm 12.2 computes the following intermediate results:

M | X84+ X 4+ X34+ X241

2 | My | X*+ X2+ X +1

M, | X

V | XS+ X5+ X4+ X2+ X

5 | XO+ X4+ X4 +X2+X

M | X842X642X5+3X44+ X3 +3X2+2X +1

3| My | X*4+2X34+3X24+3X+1

M | 2X2+ X +2

3XT+ X%+ X3

5 | XT4+ X5+ X3

M | X8 4+4X74+2X64+6X5+3X4+5X3+3X2+2X +1
5 | My | X*+2X34+3X24+3X+1

M | 4X32 +6X2+5X +2

2X7+ X6 +3X* 4+ X2

d | X4+ X44+2X343X2+2X

M | X% 4+4X7T4+ 10X +6X° +11X* +21X3+27X2 + 18X + 1
My | X*+10X3+11X2+27X +1

My | 4X3 +6X2+21X + 18
1%
)
M

10

30X6 +30X5 +24X%+2X3 + X2 4+9X
20X7 4+ 26X +4X5 +16X*+31X2+ 17X
X8 +644X7 4+ 842X0 + 134X° +523X* 4+ 21 X3 + 1019X2 + 562X + 1
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12.2 Modular arithmetic

12.2.1 Modular multiplication

Let « € Z, and let N be the precision we compute with, then a is approximated by py(a) €
7/pN7Z. Arithmetic in Z/pNZ is simply integer arithmetic modulo p” so all methods of Chap-
ter 10 apply. Let p be a constant such that multiplication of two B-bit integers requires O(B*)
bit-operations, for example ;1 = 2 for schoolbook multiplication, ¢ = lg 3 for Karatsuba multi-
plication [KAOF 1963], and ; = 1 + €, with ¢ real positive, for Schonhage—Strassen multiplica-
tion [SCST 1971]. Since a modular reduction takes the same time as a multiplication, we conclude
that modular multiplication up to precision N requires O(N*) bit-operations for fixed p.

Let Zq be represented as Z,[X]/(M (X)) with M € Z,[X] a monic, irreducible polynomial of
degree d, then working up to precision N corresponds to computing in

(z/p"Z) X1/ (Pn (M (X))).

The modular multiplication proceeds in two steps: multiplication of two polynomials of degree less
than d in (Z/p™¥ Z)[X] and a modular reduction modulo Py (M). The former is well known and re-
quires Ty, n bit-operations for p fixed, e.g., a combination of schoolbook multiplication in the p-adic
dimension and Karatsuba multiplication in the polynomial dimension gives Ty y € O(d'$3N?).
The reduction modulo Py (M) depends on the choice of representation of Z,. In the sparse
modulus representation, the reduction modulo Py (M) requires at most d(w — 1) multiplications in
7./p"N Z with w the number of nonzero coefficients of Py (M ). In the Teichmiiller representation,
the polynomial Py (M (X )) is no longer sparse and fast reduction methods should be used. The next
section shows that this requires O(1) multiplications of polynomials of degree less than d. There-
fore, we conclude that a modular multiplication in Z, to precision /N requires T,y bit-operations.

12.2.2 Fast division with remainder

Let R be a commutative ring and a,b € R[X] polynomials of degree k and d respectively and
b monic. Since b is monic, there exist unique polynomials ¢, € R[X] with a = ¢b + r and
degr < degb. Evaluating both sides at 1/X and multiplying with X* gives

XFkq (%) = XxFdq (%) X% <%) + Xk-(d=1) xd-1,. (%) . (12.5)

Note that for a polynomial P € R[X] of degree n, X" P(1/X) is the polynomial with the coeffi-
cients of P reversed. Reducing the above equation modulo X*~ (1) gives

k(LN yrea (L) yap (L k—(d—1)
Xa(X>_X q(X)Xb(X> (mod X ). (12.6)

Since b is monic, X ?b(1/X) has constant coefficient 1 and therefore is coprime to X*~(¢=1)_ Let
¢ € R[X] be the inverse of X9b(1/X) modulo X*~(4=1) je.,

¢(X) (X(1/X)) =1 (mod X*~(d=1)
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then we can recover g from

XFig @) =¥t @) ¢(X) (mod XE~(4-D), (12.7)

The polynomial ¢ can be computed using a polynomial version of Algorithm 12.10, i.e., using a
Newton iteration to find a “root” of the polynomial fY — 1 = 0.

Algorithm 12.5 Polynomial inversion

INPUT: A polynomial f € R[X] with f(0) = 1 and a power n € N.
OUTPUT: The inverse of f modulo X™.

1. if n=1 then

2. c—1

3. else

4. ' —[3]

5 ¢ « Polynomial inversion (f, n')

6. c+— (c+c(l— fe)) mod X"

7. return c

Since the degree of the polynomials doubles in each iteration, the complexity of Algorithm 12.5 is
determined by the last iteration, which requires O(1) multiplications of polynomials of degree < n
over R. Therefore, the complexity amounts to O(n*) operations in R.

Once c has been computed, the quotient g follows easily from (12.7) and the remainder is given
by 7 = a — bg (mod X?). This is summarized in Algorithm 12.6.

Algorithm 12.6 Fast division with remainder

INPUT: Polynomials a,b € R[X] with b monic.
OUTPUT: Polynomials ¢, 7 € R[X] such that a = ¢b + r and degr < degb.

1. if dega < degb then

2 qg+—0andr «—a

3. else

4 n <« dega —degb+ 1

5 ¢ « Polynomial inversion (X °€°b(1/X), n)
6. G ((x%#%a(1/X))c(X)) mod X"

7 g — X"1q(1/X)

8. r — (a — bg) mod Xdes®

9. return gandr

The complexity of Algorithm 12.6 is determined by the call to Algorithm 12.5 in Line 5 and the
multiplications in Lines 6 and 8. Since n = dega — degb + 1, we conclude that a fast reduction
requires O ((deg a — degb)* + (deg b)*) operations in R.

Example 12.7 Let R = 7Z/2'°Z, then Algorithm 12.6 computes the following intermediate results
on input (a, b) (note that b is the modulus computed in Example 12.4):
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a | 559X M + 781X 13 + 763X 12 + 684X + 133X 10 +375X9 4 922X 8 + 776 X"
+452X6 + 214 X5 + 313X* + 148 X3 + 646X ? + 428X + 168

X8 4+644X7 4+ 842X6 +134X° +523X* +21X3 + 1019X2 + 562X + 1
789X6 + 74TXP + 169X * + 906 X3 + 198X 2 + 380X + 1

337X6 4+ 755X5 4+ 768X * 4+ 420X3 + 673X 2 + 209X + 559

559X6 +209X° 4+ 673X + 420X3 + 768X 2% + 755X + 337

428 X7 4+ 728 X6 4+ 240X° + 294 X4 + 10X + 165X 2 + 743X + 855

o |

=R ™

12.3 Newton lifting

Let f € Z4[X] and assume that a € Z, satisfies v, (f’(a)) = k and v, (f(a)) = n + k for some
n > k. Proposition 3.16 then implies that there exists a unique root b € Z, of f with b = a
(mod p™). The element a is called an approximate root of f known to precision n. Reformulating
Proposition 3.16 leads to the following lemma that shows how to compute an approximate root to
precision 2n — k starting from an approximate root to precision 7.

Lemma 12.8 Let f € Z,[X] and assume that a € Z, satisfies v, (f'(a)) = kand v, (f(a)) = n+k
for some n > k. Let b be the unique root of f with b = a (mod p™). Then

(12.8)

satisfies z = b (mod p?"~*), f(z) =0 (mod p**) and v, (f(2)) = k.

Given an approximate root a € Z, to precision 7, Algorithm 12.9 computes the unique approximate
root z to precision N with z = a (mod n). Note that for such z, we have f(z) = 0 (mod pN*+F).

Algorithm 12.9 Newton iteration

INPUT: The polynomial f € Z4[X], an approximate roota € Z, the integer k with vy, (f'(a)) =
k, precision n > k such that f(a) = 0 (mod p™**) and precision V.
OUTPUT: An approximate root z € Z, of f with z = a (mod p™) and f(z) = 0 (mod p™*F).

1. if N <n then

2. Z<—a

3. else

o N [N

5 z « Newton iteration (f, a, k, N')
6 z<—z—f(z) (mod p™)

I'(2)

7. return z

An efficient implementation of the above algorithm requires we always compute with the lowest
possible precision. The result in Line 6 has to be correct up to precision /N. By induction, the
numerator f(z) in Line 6 satisfies f(z) = 0 (mod p™'**) and the denominator f’(z) satisfies
v,(f'(2)) = k, which implies that f’(z)/p" is a unit in Z,. Dividing the numerator by p™ **,
we conclude that it suffices to compute f(z)/p™ ** and f’(z)/p* with precision N — N, which
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implies that it suffices to compute f(z) (mod p¥t*) and f/(z) (mod p™ ™). Note that also
the inverse of f’(z)/p* and the product with f(z)/p™ ** only has to be computed with precision
N —N'".

Since in each iteration, the precision we compute with almost doubles, the complexity of Algo-
rithm 12.9 is determined by the last iteration. Let T (/N') denote the time to evaluate f at precision
N, then the complexity of Algorithm 12.9 is given by O(max{Tt(N), T4 n}), which in most cases
reduces to O(T(N)).

12.3.1 Inverse

Let a € Z, be a unit and assume we have computed the inverse of pi(a) € F, using one of the
algorithms given in Chapter 11. Let z be any lift of 1/p1(a) to Zg, then zj is an approximate root
of the polynomial f(X) = 1 — aX to precision 1, since f'(z9) = a is a unit in Z,. Applying
Lemma 12.8 to f leads to the iteration z < z + (1 — az)/a. Since the division by a only has to be
computed at half precision, we can use z instead of 1/a giving the iteration z < z + z(1 — az).

Algorithm 12.10 Inverse

INPUT: A unita € Z4 and precision V.
OUTPUT: The inverse of a to precision N.

1. if N =1 then

2. 2z« 1/amod p

3. else

4. z «— Inverse (a, [ ])

5. 2 — 2+ 2z(1 — az) mod p"

6. return z

Let e; = 1 —az; be the error in the ¢-th iteration. Then, an easy calculation shows thate; 1 = e%, SO
convergence is quadratic, which explains the statement in Line 4. Since evaluating f requires only
one multiplication at precision /N, we conclude that the complexity of Algorithm 12.101s O(Ty n).

Example 12.11 Assume that Zs up to precision N = 10 is represented as (Z/2'°Z)[X]/ (M (X))
with M(X) = X8 4 644X 7 + 842X6 4 134X5 4 523X* + 21X3 + 1019X2 + 562X + 1, then
Algorithm 12.10 computes the following intermediate results on input (a, 10) with

a=982X7" 4+ 303X% + 724 X% + 458 X% + 918 X3 + 423X 2 + 650X + 591

1 | X0+ X34+ X24+X

2 | 2XT+ X0+ 3X3+ X2+ X

3 | 6XT+5X0 44X 4+ 7X3 4+ X2+ X +4

5 | 22X74+21X6 424X +4X* +31X3+25X2 + X +28

10 | 854X 7 +373X0 4+ 760X5 + 132X* + 863 X3 4+ 697X 2 + 321X + 60
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12.3.2 Inverse square root

Let a € Z, and consider the polynomial f(X) = 1 — aX?, then if a is an invertible square, 1/\/a
is a root of f. Applying Lemma 12.8 to f leads to the iteration z « z + (1 — a2?)/(2az), which
needs a division by az. Note however that this division can be replaced by a multiplication by
z, giving the final iteration z « 2 + 2(1 — a2?)/2. Let e; = 1 — az? be the error in the i-th
iteration, then an easy calculation shows that e;11 = (3e? + €3)/4. Let n; = v,(e;) > 0, then
nip1 = 2n; forp > 5, njy1 = 2n; + 1 forp = 3 and njy1 = 2n; — 2 for p = 2. Thus forp = 2
we need an approximate root to precision 2 to initialize the Newton iteration. Since every element
in a finite field of characteristic 2 is a square, we can always compute z = 1/4/p1(a) (mod 2)
using finite field arithmetic. Let y = z + 2A, then 1 — ay? = 0 (mod 8) iff A is a solution
of A2 + zA = (1/a — 2?)/4 (mod 2). If this equation has no solution then a is not a square;
otherwise, z + 2A is an approximate root to precision 2.

Algorithm 12.12 Inverse square root (p = 2)

INPUT: An invertible square a € Zq, an initial approximation zg to precision 2 and precision N.
OUTPUT: The inverse square root of a to precision N.

1. if N <2 then

2. Z < 20

3. else

N[

5. z + Inverse square root (a, z, N')

6. ze—z+ Z(l_faf) mod 2™V [(1 — az®) computed modulo 2V +"]

7. return z

Since evaluating f requires only O(1) multiplications at precision /N, we conclude that the com-
plexity of Algorithm 12.12is O(Ty, n).

Example 12.13 Let Zos up to precision N = 10 be represented as in Example 12.11. Suppose we
want to compute the inverse square root of

a=823X"+707X0% +860X° + 387X* +663X>+ 183X2 + 12X + 354.

The initial approximation to precision 2 is given by zp = 2X7 + X¢ + 3X3 + X2 + X. Since the
precision we compute with is N = 10, the unique inverse square root z = 2y (mod 4) can only
be determined up to precision N — 1. On input (a,9), Algorithm 12.12 computes the following
intermediate results:

| : |

N
2 | 2X"+ X0+ 3X3+ X2+ X
3
5
9

6X7T+5X0 44X +T7X3 + X2+ X +4
22X7 4+ 21X6 4+ 24X5 +4X* +31X3+25X2 4+ X 428
342X7 + 373X6 4+ 248 X° + 132X* + 351X + 185X 2 + 321X + 60
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12.3.3 Square root

Leta € Z, be a square in Z,, then v = v, (a) must be even and y/a can be computed as p*/2\/a/p®
with a/p¥ a unit in Z,. Therefore, assume that  is an invertible square in Z.

A trivial method to obtain /a is simply to compute ¢ = 1/+/a using Algorithm 12.12 and to
return \/a = ac, which requires one multiplication at full precision. A trick due to Karp and
Markstein [KAMA 1997] can be used to merge this multiplication with the last step of the iteration
as follows: compute b « az mod p" " and replace Line 6 of Algorithm 12.12 in the last iteration
by z « b+ 2(a—b?)/2 mod p. Note that b is only computed at half precision, whereas the trivial
method needs a multiplication at full precision.

12.4 Hensel lifting

Let f € Z4[X] be a polynomial with integral coefficients and assume that the leading coefficient
of fis a unitin Z,. The reduction of f modulo p is thus a polynomial P; (f) over F, of the same
degree as f. Given a factorization f = gh (mod p) with g, h € Z, such that g and h are coprime
modulo p, Hensel’s lemma 3.17 states that this factorization can be lifted modulo arbitrary powers
of p. The following lemma is a reformulation of Hensel’s lemma, but with quadratic convergence.

Lemma 12.14 Let f, gy, hi, sk, ti € Z4[X] be polynomials with integral coefficients such that
f=grhy (modp¥) and spgp +tphr =1 (mod pk),

with deg f = deg Pi(f), the leading coefficient of hy, a unit in Z,, deg sy, < deg hy, and deg ), <
deg gi. Then there exists polynomials hoy, gak, Sok, tor € Z4[X] such that

f = gokhor  (mod p?*) and  sopgor + toxhor =1 (mod p?F).

Furthermore, go, = gr (mod p*), hop = by (mod p*), sop = s (mod p*), tor = t1, (mod pr),
deg gor, = deg g, deg hop, = deg hy, and deg sop, < deg hoy and deg tor, < deg gok.

The construction of these polynomials is given as Algorithm 12.15. To illustrate how these formulas
are devised, we show that go;, and hoy constructed in Line 3 satisfy the above lemma. Define A,
and Ay, by gor = gk +pkAg and hop = hy, + p*Ap, then f = gorhor (mod p*) implies

= grhi

o Apgr + Aghy  (mod p*). (12.9)

e

Multiplying both sides of the equation s;. gy, + t1hr, = 1 (mod p*) by e, we indeed conclude that
esk = quhy + Ay, (mod p¥) and ety = g9 + A, (mod p).

Algorithm 12.15 Hensel lift iteration

INPUT: Polynomials f, gk, hi, Sk, tk € Zq[X] as in Lemma 12.14 and precision k.
OUTPUT: Polynomials ga, hok, Sk, tar € Zq[X] as in Lemma 12.14.

1 e (f— gkhi)/p" mod p*

compute ¢, € Zy[X] with degr < deg hy, and es, = ghy +r (mod p¥)
ok “— Gk —|—pk(€tk + qgr) mod p?® and ha — hi + p®r mod p?*

e« (1 — skgar — tihar)/p" mod p*

a > wn

compute q,r € Z4[X] with degr < deg hoy and esy = ghog 4+ 7 (mod p*)
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6. Sok — sp + p"r mod p?* and tar — tk +pk(etk + gg2r) mod p2F

7. return gop, hok, Sak, Lok

Using Algorithm 12.15 as a subroutine, we easily deduce an algorithm to lift the factorization of a
polynomial modulo p to arbitrarily high powers of p.

Algorithm 12.16 Hensel lift

INPUT: Polynomials f, g, h, s,t € Zq[X] with f = gh (mod p) and sg + th = 1 (mod p),
precision N.
OUTPUT: Polynomials G, H, S, T € Z,[X] with f = GH (mod p") and SG + TH = 1
(mod p™).

1. if N =1 then

2. G—g H—h S—sandT «— t

3. else

v ke[d)

5. gk, hi, Sk, t <— Hensel lift (f, g, h, s, t, k)

6. G, H,S,T <« Hensel lift iteration (f, gk, bk, Sk, tk, k)

7. return G,H,S,T

Since the precision we work with doubles in each iteration, the complexity of Algorithm 12.16 is
determined by the last iteration. Let n = deg f, then Algorithm 12.15 requires O(1) multiplications
of polynomials of degree less than n and O(1) divisions with remainder, both of which require
O(n"Ty, n) bit-operations.

Example 12.17 In this example, we illustrate Algorithm 12.16 for polynomials over Zs. Define
f(X) = X104321X°4+293 X5 +93 X "+843 X +699 X5 +972 X+ 781 X 3+ 772X ?+129X +376,
then clearly f = gh (mod 2) withg = X%+ X* + X3+ 1and h = X* + X3 + X. Using Euclid

extended ged algorithm in the ring Fo[X], we compute s = X2 + X +landt = X%+ X + 1 and
oninput (f, g, h, s, t,10), Algorithm 12.16 computes the following results:

X0 4 44X5 4+ 19X* +165X3 4+ 92X2 + 206X + 529
X4 4+ 277X53 +374X2 4+ 737X + 504

660X3 + 893X 2 + 493X + 345

364X° 4+ 311X* 4+ 848X3 + 618X2 4+ 979X + 221

N T Q

12.5 Frobenius substitution

In this section, we present various algorithms to compute the Frobenius substitution X on Z,. De-
pending on the representation of Z,, different algorithms should be used.
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12.5.1 Sparse modulus

Let Zg ~ Zy[X]/(M (X)) and assume that M is sparse, monic of degree d and with coefficients
between 0 and p — 1. Given any element

d-1
a= ZaiXi € 7y
i=0

with a; € Z, for 0 <4 < d, then clearly

Y(a) = ZaiZ(X)i.

Therefore, if we precompute 3(X ), we obtain 3(a) by evaluating the polynomial

d—1
a(Y) = Z a;Y?
=0

at X(X).

Computing (X)) can be done efficiently using a Newton iteration on M starting from the initial
approximation X”. Let w be the number of nonzero coefficients of M (X)), then we can clearly eval-
uate M and M’ using O(w lg d) multiplications in Z,. Applying Algorithm 12.9 to the polynomial
M thus leads to an O(wTy, v lg d) algorithm to compute ¥(X) mod p™.

Evaluating the polynomial a(Y") can be done using Horner’s rule, which needs O(d) multiplica-
tions at precision /N. This would lead to an O(dT}, ) algorithm to compute ¥(a). At the expense
of storing O(\/E) elements of Z,, we can use the Paterson—Stockmeyer algorithm [PAST 1973]: let
B = [V/d] and precompute $(X)* for 0 < i < B using O(v/d) multiplications in Z,. Rewriting
a(Y) as

[n/B] /B—1 ‘ ‘
aY)= Y (Z aHBjYZ> y B, (12.10)

i=0 \i=0

with a, = 0 for k > d, we can compute ¥(a) using O(d) scalar multiplications and O(v/d)
multiplications in Z, or O(d*N* + \/ETck ~) bit-operations for a given precision N.

An asymptotically faster method can be obtained by replacing the O(d) scalar multiplications
with a matrix product as follows: let I" be the B x B matrix with I'[][j] = a;j, i.e., the rows of
I" contain the scalars of the inner sum in (12.10) and let A be the B x d matrix such that

SH
—

S(X) =S A[{][j] X7, fori=0,...,B—1.

<.
Il
o

Consider the B x d matrix A = T'A, then the j-th row of A simply contains the coefficients of
B-1
Z aiJrBjE(X)l.
i=0

A method by Huang and Pan [HUPA 1998] can be used to compute the rectangular matrix product
in O(B3?3%) ring operations. Therefore, a Frobenius substitution requires O (d'*%" N* +/dT, y)
bit-operations.
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12.5.2 Teichmiiller modulus

Let Zq ~ Z,[X]/(M(X)) and assume that M is a Teichmiiller modulus of degree d. As shown
in Section 12.1, this implies that ¥(X) = XP?. Given an element a = Z?;Ol a; X" € Zg, we can
simply compute Y(a) as

d—1
S(a) =Y a; X?  (mod M(X)).
=0

The reduction modulo M (X)) takes at most p — 1 multiplications over Z,, thus computing 3(a)
(mod p") for a € Z, requires O(p Ty, n) time.
The inverse Frobenius substitution can also be computed very efficiently as follows:

d—1 p—1
»t <§_; ale> = Z( Z akarij) CJ(X),

J=0 \ 0<pk+j<d

where C;(X) = X71(XY) = Xt (mod M (X)). Assuming C; for j =0,...,p — 1 are pre-
computed, computing ¥~!(a) (mod p) only takes p — 1 multiplications over Z, or O(p Ty n)
time.

12.5.3 Gaussian normal basis

Assume that Z, admits a Gaussian normal basig of type ¢, then elements of Z, are embedded in the
ring Z,[X]/(X ¥+ —1). Since X*(X) = X", we have

dt dt

.k .
YE(a) = E a; X7 = ay + E :aj/pk mod (1) X7 (12.11)
i=0 j=1

So, we can compute an arbitrary repeated Frobenius substitution ¥*(a) by a simple permutation of
the coefficients of a, which only requires O(dt) bit-operations.

12.6 Artin—Schreier equations

Recall that if IV, is a field of characteristic p, an Artin—Schreier equation is an equation of the form
X?P — X —a = 0 witha € F,. The additive version of Hilbert Satz 90 states that such an equation
has a solution in I, if and only if Trg /¢, (@) = 0. Since o(z) = 2P for x € F,, we can generalize
this type of equation to Z, by considering

aX(X)+ X +v=0, (12.12)

with a, 3,7 € Z, and o a unit in Z,.

It is easy to see that such an equation always has a unique solution in Q, (not necessarily in Z,),
as long as N(—3/a) # 1. Indeed, let a; = —3/a and b; = —7/a, then clearly ¥ (x) = a;x + by
for any solution x. Applying X to both sides, we see that we can recursively define ay, b, € Z,
such that ¥ (x) = apx + by, for k = 2,...,d. Since ¥¢(x) = z for all z € Q,, we conclude that
the unique solution in Q to the above equation is given by bg/(1 — ag).
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By imposing the condition v, () > 0, the unique solution to (12.12) is always integral. Indeed,
writing out the recursive process explicitly shows that the unique solution is given by

T B(b) x T ¥ ()
1 —Ng,/q,(a1)
Since v, (a1) = v,p(3) > 0, we conclude that 1 — Ng,_ /g, (a1) is a unit and therefore = € Z,.

12.6.1 Lercier-Lubicz algorithm

Lercier and Lubicz [LELU 2003] use a simple square and multiply algorithm to compute the ay,
by € Z, based on the formula

YA (2) = S (apx + by) = 2" (ar) (anx + by) + X" (bg).

To find a solution to X(z) = az+b (mod p™) we simply call Algorithm 12.18 on input (a, b, d, N),
which returns a4 and by. The complexity of Algorithm 12.18 is determined by Lines 6 and 7 which
need O(1) multiplications and O(1) repeated Frobenius substitutions in Z,/p™ Z.

For fields with a Gaussian normal basis of type ¢, the Frobenius substitution takes O(dt) bit-
operations as shown in Section 12.5.3. Since the algorithm needs O(lg d) recursive calls, the time
and space complexity for fields with Gaussian normal basis are O(Ty n lgd) and O(dN) respec-
tively.

If the field does not admit a Gaussian normal basis, Algorithm 12.18 should be modified to keep
track of %' (X). This can be achieved by introducing an extra variable ¢ which equals $* (X ) and is
returned in Line 11 together with aj, and bg. The variable ¢ can then be updated by evaluating it at it-
self, such that ¢ becomes X2¥’ (X) and conjugating once if k is odd. Using the Paterson—Stockmeyer
trick [PAST 1973], the complexity of Algorithm 12.18 then becomes O((dQN“ + \/ETd,N) lg d)
and the space complexity is O(d'-5 V).

Algorithm 12.18 Artin—Schreier root square multiply

INPUT: Elements a, b € Z, a power k and precision N.
OUTPUT: Elements ay, by, € Z, such that ©*(z) = agz + by (mod p™).

1. if k=1 then

2. ar < a mod pN and b, < b mod pN
3. else
s K|k
5. ays, by < Artin—Schreier root square multiply (a, b, k', N)
6. ap — ak/Ek/(ak/) mod p”~
7. b — b S* (ap) + S (b ) mod pV
8. if k=1 (mod 2) then
9. b — b3 (ax) + 2(bg) mod p™
10. ar «— aX(ar) mod N

11.  return ag, by

Algorithm 12.19 solves the general Artin—Schreier equation (12.12) and clearly has the same time
and space complexity as Algorithm 12.18.
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Algorithm 12.19 Artin—Schreier root |

INPUT: Elements «, 3, € Zq with cv a unit in Zg, v, (3) > 0 and precision N.
OUTPUT: An element 2 € Z, such that aX(x) + Bz +v =0 (mod p").

1. agq,bq < Artin—Schreier root square multiply (—3/ca, —v/a, n, N)

2. return by/(1 — aq) mod p™

Example 12.20 The ring Zs10 admits a Gaussian normal basis of type 1 and can be represented as
Zo[X]/(M(X)) with M(X) = (X' —1)/(X —1). Anelementa = 3,_, a; X" is embedded in
the ring Zo[Y]/(Y™ — 1) asa = 3.°_, ;Y. Assume we want to find the integral solution s to the
equation X(X) + 8X + v = 0 where

f=18X" + 804X8 + 354X 7 + 56 X5 + 656X° + 892X * + 824 X3 + 578X 2 + 942X + 128,

v =248X° + 101X°% 4+ 64X7 + 955X 4 399X° + 664X + 313X> + 819X?% 4 1012X + 32,

then Algorithm 12.18 computes the following intermediate results:

a1 | 1006Y9 4 220Y® + 670Y 7 + 968Y 6 4 368Y5 + 132Y* + 200Y 3 4 446Y 2 + 82Y + 896

by | TT6Y° +923Y8 4+ 960Y7 4 69Y 6 + 625Y5 + 360Y* 4 711Y3 + 205Y2 + 12Y + 992

az | 420Y10 4 680Y° + 324Y® +416Y7 + 652Y6 + 388Y® + 424V 4 + 992Y3 + 100Y2 4 644Y + 96
by | 287Y10 4938V 4 68Y® + 928Y 7 + 583Y 0 + 659Y° + 353Y4 + 268Y 3 + 842Y 2 4 901Y + 698
as | 768Y10 4 640Y9 4 64Y8 4 672Y 7 + 256Y 6 4 928Y5 + 96Y 4 + 704Y3 + 736Y 2 + 96Y + 160
bs | 969Y10 4+ 92Y° + 29Y8 4+ 751Y7 + 782Y6 + 826Y° + 219Y* + 919Y3 + 936Y2 + 256Y + 954
aio 0

bio | 992Y10 42329 4+ 759Y8 4+ 571Y 7 + 986Y 6 4+ 270Y 5 4 431Y% 4+ 701Y3 + 124Y2 + 585Y + 58

Since ajp = 0 (mod 2!°), the unique solution s is simply the reduction modulo M of by, i.e.,

s = 264X +791X8 +603X7 + 1018 X% + 302X° + 463 X* + 733X> + 156 X2 + 617X + 90.

12.6.2 Harley’s algorithm

In an e-mail to the NMBRTHRY list [HAR 2002b], Harley sketched a doubly recursive algorithm to
solve an Artin—Schreier equation of the form (12.12) assuming that v,(3) > 0. Note that this
implies that the solution is integral.

The main idea is as follows: assume we have an algorithm that returns a solution zy- to an
equation of the form (12.12) to precision N’ = [N/2]. Write xn = 2y + N A and substitute
xn into (12.12), which leads to

aX(An) + BAN + az(le)p—;,ﬁxN/ Lt 0 (mod pN—N".

Since N — N’ < N’ we can use the same algorithm to determine Ay mod pN =N " and therefore N.
This immediately leads to a recursive algorithm if we can solve the base case, i.e., find a solution
to (12.12) modulo p. If we assume that v, (5) > 0, then the base case reduces to solving

aX(z)+v=0 (mod p).

1/p

Since « is a unit, this uniquely determines x = (—v/«) (mod p).
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Algorithm 12.21 Artin—Schreier root Il

INPUT: Elements «, 3,7 € Zq, a aunitin Zgq, v,(5) > 0 and precision V.
OUTPUT: An element = € Z, such that o (z) + Bz +~v = (mod p™).

1. if N =1 then

2 z — (/)" (mod p)
3. else
4. N’ — [%W
5. x’ « Artin—Schreier root Il (o, 3,7y, N')

/ /
6. o e aX(z’) "I;lﬁw + mod pN N

p

7. A’ + Artin-Schreier root Il (o, 3,7, N — N')
8. z— (¢' + pN/A') mod p™v

9. return =

The p-th root in Line 2 of Algorithm 12.21 should not be computed by naively taking the p?~!-th

power. Instead, let F, = IF,,[d], then

d—1

-1 \YP  p-1 . 4 '
(Zm?) :Z< > apmﬁ')%x with C;(@) = @)/ ="
1=0

7=0 \0<pk+j<d

This shows that for Z € F,, we can compute Z'/? with p — 1 multiplications over I,

The complexity of Algorithm 12.21 is determined by the recursive calls in Lines 5 and 7, the
O(1) multiplications in Line 6, and the Frobenius substitution in Line 6. If we assume that Z, is
represented using the Teichmiiller modulus, the Frobenius substitution in Z,/p™Z, can be com-
puted using O(Ty, n) bit-operations for p fixed. If T'(V) is the running time of Algorithm 12.21 for
precision N, then we have

T(N) <2T([N/2]) + cTan,

for some constant c. The above relation implies by induction that the complexity of Algorithm 12.21
is O(Tq,n1g N).

Example 12.22 Let Zys be represented as Zo[X]/ (M (X)) with M (X) = X34+ X*+ X34+ X2 +1
and let

B =186X7 4 858X ° 4+ 810X° + 50X* + 208X3 + 36 X2 + 2X + 652,
7 =139X7 +911X°% +938X5 + 970X + 412X3 + 1021X? + 99X + 667.

Then on input (1, 3,~, 10) Algorithm 12.21 computes the following intermediate results given as a
binary tree: the root of the tree is denoted T, a left child with L and a right child with R.
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‘Node ‘ N T

TLLLL | 1 | X4+ X604+ X4+ X

TLLLR | 1 | X7+ X5+ X3 + X2

TLLL | 2 | 3X74+ X0 4+2X5 4+ X4 4+2X% +2X24+ X

TLLR | 1 | XS+ X5+ X2+ X +1

TLL 3 | 3X"+5X0 +6X54+ Xt +2X3+6X2+5X +4

TLRL 1 | X0+ X+ X4 4 X34+ X +1

TLRR | 1 | X7+ X4+ X3+ X +1

TLR 2 | 2X7T4+ X0 4+ X° 43X +3X3+3X+3

TL 5 | 19X7 +13X0 +14X° +25X* +26X3 +6X2 +29X + 28
TRLLL | 1 | XSO+ X5+ X2+ X +1

TRLIR | 1 | X7+ X4+ X3+ X2+ X

TRLL 2 | 2X7+ X6 4+3X°4+2X3+3X2+3X +1

TRLR | 1 | X34+ X2+ X

TRL 31 2XT+ X0 43X +6X3+T7X2+7X +1

TRRL | 1 | X+ X4+ X +1

TRRR 1| XS4+ X°+ X4+ X341

TRR 2 | 2X0+3X°+3X44+2X3+X +3

TR 5 | 2X7T4+17X0 4+ 27X° 4 24X* +22X3 4+ 7X2 + 15X + 25
T 10 | 83X7 4+ 557X 0 4+ 878X ° + 793X * + 730X3 4 230X 2 + 509X + 828

12.7 Generalized Newton lifting

In this section we consider equations of the form ¢ (Y, X(Y)) = 0 with ¢(Y, Z) € Z,[Y, Z]. These
equations arise naturally in the point counting algorithms described in Section 17.3. However, solv-
ing such an equation is also useful for more general applications, e.g., computing the Teichmiiller
lift of an element in ;. Indeed, let @ € I, then the Teichmiiller lift w(@) is the unique solution of
the equation Y7 — $(Y') = 0 with p; (w(@)) = @.

Let z € Zg be aroot of ¢(Y,X(Y)) = 0 and assume we know zy = z (mod p”). Define
dn = (z — xn)/p", then the Taylor expansion around z v gives

0=0¢(z,2(z)) = o(zn+pVon,E(xn +p o))

with

A

:%
Yoy

This implies that d 5 has to be a solution of

(zn,2(zn)) (mod pV) and A, = g—z(xN,Z(xN)) (mod p™).
AE(X)+A,X + M =0 (mod p").

pN

(12.13)

¢(zn, S(xn)) + PV (SnA, + E(0n)AL)  (mod p*N), (12.14)

Letk = v, (A.), thenif v,(A,) > k and v, (¢(zn,X(zn))) = k+ N and N > k, we recover the
Artin-Schreier equation (12.12) with o = A /p*, 3 = A, /pF and v = ¢(zn, Z(zn)) /P F up
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to precision NV — k. Note that any solution ¢’ € Z, to the above equation satisfies
8 =6yx (mod pVF).
Let rony_p = on +p™ &/, then zon_p = 2 (mod p?V~F) and (12.13) implies that
¢(a:2N_k,Z(x2N_k)) =0 (mod p*M).

Furthermore, since we assumed that N > k, we have

0 0
Up (8—§(sz—1<,2(sz—1¢))) =k and v, (a—$($2N—kvz($2N—k))> >k, (12.15)

so we can repeat the same procedure to find a solution up to arbitrary precision.

Algorithm 12.23 Generalized Newton lift

INPUT: A polynomial ¢(Y, Z) € Zq, an element zo € Zg satisfying the relation gzﬁ(m, E(xo)) =
0 (mod p** ™) with k = v, (22 (0, S(x0))) and precision N.
OUTPUT: An element 2 of Zg such that ¢(zn, S(zn)) = 0 (mod p™**) and zx = o

(mod p*tt).

1. if N<k+1 then

2. €T — Xo

3. else

o N[

5. x' « Generalized Newton lift (¢, xo, N')

6. y' — B(z’) mod pNtF

7. V — ¢(z',y') mod pNtF

8. Ay — §—$ (2,y") mod pN

9. A, — g—;(x’,y') mod p’
10. § — Artin—Schreier root (A. /p*, A, /p*, V/pN'* N' — k)
11. z— (' —|—le6) mod p™

12. return

Since the precision of the computations almost doubles in every step, the complexity of Algo-
rithm 12.23 is the same as the complexity of the Artin—Schreier root subroutine in Line 10.

12.8 Applications

12.8.1 Teichmiiller lift

Recall that the Teichmiiller lift w(@) of an element @ € F, is defined as follows: w(0) = 0 and for
nonzero @ € Fy, w(@) is the unique (¢ — 1)-th root of unity with p; (w(a)) = a.

A trivial, but slow algorithm to compute w (@) mod p” uses a simple Newton lifting on the poly-
nomial f(X) = X9~ — 1. Since evaluating f requires O(d) multiplications for p fixed, the overall
complexity of this approach is O(dTy, n).
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For N < d there exists a faster algorithm based on repeated p-th powering: assume that a satisfies
pi(a) =aand a?"! — 1 =0 (mod p¥), then we can write a?~! = 1 + p*A with A € Z,. Taking
the p-th power of both sides then gives (a?)?™! = 1+ p* 1A’ with A’ = ((1+p~A)P —1) /pF+L.
Reducing modulo p¥*1 shows that a? = w(@”) (mod p**1) and thus is a?, a better approximation
of w(aP). This immediately leads to Algorithm 12.24, which has complexity O(NTy ), and thus
is faster than the trivial algorithm for N < d.

Algorithm 12.24 Teichmdller lift

INPUT: An element @ € [F; and precision N.
OUTPUT: The Teichmiiller lift z = w(@) (mod p™) of @ to precision N.

1. k< N-1
1
2. r—ar* [arbitrary lift]

3. oz« (apk) mod p~

4. return z

Example 12.25 Let Fos be represented as Fo[X]/ (M (X)) with M (X) = X8+ X*4+ X3+ X2 +1
andlet@ = X%+ X2+ X +1. In Line 2 of Algorithm 12.24, we compute the 2°-th root 7 of @ which
is given by 7 = X7 4+ X? 4+ X? 4+ X. Let 7 be an arbitrary lift of 7 to Zow =~ Zy[X]/(M (X)),
then

w(@ = r?’

= 64X7+871X% 4 992X5 + 784X + 480X + 615X 2 + 675X + 443 (mod 2'0).

The fastest algorithm, however, is based on the following observation: since the Teichmiiller lift
w(@) is the unique (¢ — 1)-th root of unity with py (w(@)) = @, it also satisfies ¥ (w(a@)) = w(@)”.
Indeed, ¥(w(@)) is a (¢ — 1)-th root of unity and since w(-) is multiplicative and ¥ (w(a)) = @’
(mod p), the claim follows. The Teichmiiller lift w(@) can thus be computed as the solution of

Y(X)—XP=0and X =a (mod p).

Assuming that Z, is represented using the Teichmiiller modulus, Algorithm 12.23 then computes
w(@) (mod p) using O(T, n lg N) bit-operations.

12.8.2 Logarithm

Definition 12.26 Let = € Z, then the p-adic logarithmic function of = is defined by

log(x) =Y (=1)""" (=~ D (12.16)

i=1
The function log(x) converges for v, (x — 1) > 0.

Assume that a € Z, satisfies v,(a — 1) > 0, then using Horner’s rule, evaluating log(a) up to
precision N takes O( ) multiplications over Z, /p™ Z, or O(NT, ) bit- -operations,

Satoh, Skjernaa, and Taguchl [SASK™ 2003] solve thlS problem by noting that a?" fork € Nis
very close to unity, i.e., v,(a? — 1) > k. If a € Z,/p~Z,, then a?" is well defined in Z,/p" +*7Z,
and can be computed with O(k) multiplications in Z,/p"™ T*Z,. Furthermore, note that

log(a) =p~* (log(apk) (mod pNJrk)) (mod p™)
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and that log (a”k) (mod p™**) can be computed with O(N/k) multiplications over Z,/p™ T*Z,.
So, if we take k ~ /N, then log(a) (mod p") can be computed in O(v/NT, N4yN) time.

In characteristic 2, Satoh, Skjernaa, and Taguchi suggested a further improvément. Without loss
of generality, we can assume that va(a — 1) > 1. Indeed, since v,(a — 1) > 1, we conclude that
vp(a®? — 1) > 1 and log(a?) = 21og(a). Therefore, assume that va(a — 1) > 1, then we have a = 1
(mod 2%) forv > 2. . 14

Letz = a—1 € 2%, /2VZ, and define y = —— € 212, /2V 17, thena = 1 + z = —

2+ 2 1—7v
and thus

o 2]
log(a) =log(1+ z) =log(l 4+ ~) —log(l —v) = 22 i
j=1

i—1
2j— 1

Note that all the denominators in the above formula are odd. Reducing this equation modulo 2V
therefore leads to

log(a) =log(l+2) =2 Z i (mod 27).

1<(v—1)(2j—1)<N—1 2

Example 12.27 Let Zys be represented as Z[X|/ (M (X)) with M (X) = X8+ X*+ X3+ X?+1
andleta = 872X 7+ 376 X®+460X° +476 X%+ 138 X3 +462X 2+ 794X + 381. Since a satisfies
va(a — 1) = 1, we can compute the logarithm of a which is given by

log(a) = 540X 7 + 298X 4+ 944 X5 + 614X* + 390X > + 884X? + 586X + 244 (mod 2'7).

12.8.3 Exponential

Definition 12.28 Let = € Z, then the p-adic exponential function of x is defined by

expla) = 30

il
i=0

' (12.17)
The function exp(x) converges for v, (z) > 1/(p — 1).
An easy calculation shows that

B
vp(il) = Z Lz/ka with B = |log,i| .
k=1

The valuation v, (i!) can thus be bounded by v, (i!) < (i —1)/(p — 1), which explains the radius of
convergence. Let a € Z, then we have the following identities

log(exp(a)) = a, forv,(a) >1/(p—1),
exp(log(a)) = a, forv,(a—1)>1/(p—1).

First assume that a € Z,, then since v,(a) > 1/(p—1), we have v,(a) > 1forp > 3and v,(a) > 2
for p = 2. So if we precompute exp(p) (mod p”) for p > 3 or exp(4) (mod 2VV) for p = 2, then

exp(a) = exp(p)*/? (mod p"), forp >3,
exp(a) = exp(4)** (mod 2V), forp = 2,

and we can use a simple square and multiply algorithm to perform the final exponentiation.
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For a € Z, we simply evaluate the power series of the exponential function (12.17) modulo p™.
The bound vy, (i!) < (¢ — 1)/(p — 1) implies that we have to compute
a’ Ny (p—1)N -1
exp(a) = — (mod p") with B= ——F——.
@= 2, 5 (mods™) = Dupl@) —1

Using the Paterson—Stockmeyer algorithm [PAST 1973], this requires O(dN'*# + /N Ty, n) bit-
operations and O(dN'!-?) space.

Example 12.29 Let Zos be represented as Zo[X]/ (M (X)) with M (X) = X84+ X*+ X34+ X2 +1
andleta = 720X "+ 752X54920X°+952X* 4276 X3 +924 X%+ 564X +760. Since v,(a) = 2,
we can compute the exponential function of a, which is given by

exp(a) = 496X + 600X + 552X° + 272X + 388X° + 132X? 4+ 308X + 57 (mod 2'9).

12.8.4 Trace

Definition 12.30 Let X denote the Frobenius substitution on QQ, then the trace of x € Q, is
Trg,/q, () =2 +X(z) + -+ »4-2(z) + 21 (). (12.18)
Since X generates Gal(Q,/Q)), the trace Trq, /g, () is an element of Q.

Let a € Qq, then Trg, /g, (p"a) = p* Trq, /g, (), so we can assume that a is a unit in Zg. If Zj is
represented as Z[X]/(M (X)) and

d—1
a=>) aX' with a; € Z,,
1=0
then clearly
d—1
Trg,/0,(a) =Y _ ai Trg, /g, (X"). (12.19)
1=0

Each Trq, /q, (X% fori=0,...,d — 1 can be precomputed using Newton’s formula:
i—1
Trg, /0, (X') + ) Trg,/q, (X" )Ma—j +iMa—i =0 (mod p"),
j=1

with M (X) = Z?:o M; X", Assuming that the Trg, /g, (X") fori =0,...,d—1 are precomputed,
the trace of an element a € Z, can be computed to precision N in O(dN*) time.

Example 12.31 Let Zos be represented as Zo[X]/(M (X)) with M(X) = X8 +644X7+842X6+
134X° + 523X* + 21X3 +1019X?2 + 562X + 1, then M is a Teichmiiller modulus to precision
10. Newton’s formula gives

| i 1 2 3 4 5 6 7|
| Trg, g, (X7) | 380 380 166 380 623 166 42 |

Note that the traces of X and X 2" are equal since M is a Teichmiiller modulus.
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12.8.5 Norm

Definition 12.32 Let X denote the Frobenius substitution on Q, then the norm of x € Q, is

d—1
Ng, /0, (@) = [[ 2 (). (12.20)
=0

Since ¥ generates Gal(Q,/Qj), the norm Ng_/q, () is an element of Q.

In this section we give an overview of the existing algorithms to compute Ng, /g, (a) for an element
a € Qq. Since Ng, /g, (p*a) = p™* Ng, /g, (a), we can assume that a is a unit in Z,.

12.8.5.a Norm computation |

Kedlaya [KED 2001] suggested a basic square and multiply approach by computing
Qi1 = 221 (0&1) (o7 fori = 0, ‘g I_lg dJ 5

with ap = a and to combine these to recover Ng, /g, (a) = 247 (a) - - - £(a)a. Letd = Zf;é d;2%,
with d; € {0,1} and dy—1 = 1, then we can write

{—1

it ol—1 L
Ng, g, (@) = [[=* T (o),
1=0

where the sum 2t1 + ... 4+ 2¢=1 ig defined to be zero for i > ¢ — 1. This formula immediately
leads to Algorithm 12.33. Note that this algorithm remains valid for matrices over Z,.

Algorithm 12.33 Norm |

INPUT: An element a € Z, with ¢ = p? and a precision N.
OuTpPUT: The norm Ny, /g, (@) mod p".

1. i+<—d,j«—0,r<—1lands+«a

2. while 2 > 0 do

3. if =1 (mod 2) then r «— »?’ (r) s mod p
4. if i>1 then s — %’ (s) s mod p*
5. j—j+landi«— [i/2]

6. return r

This algorithm is particularly attractive for p-adic fields with Gaussian normal basis of small type,
due to efficient repeated Frobenius substitutions. In this case the time complexity is determined by
the O(lg d) multiplications in Z, /pNZ, or O (Tdy ~Nlg d) bit-operations and the space complexity is
O(dN).

If the field does not admit a Gaussian normal basis, then Algorithm 12.33 should be adapted as
follows: introduce a new variable ¢ that keeps track of %’ (X), i.e., ¢ is initialized with X and in
Line 4, c is evaluated at itself, since £ (X) = X2’ (£’ (X)). Computing 2’ (r) and £ (s)
in Lines 3 and 4 then simply reduces to an evaluation at c. Using the Paterson—Stockmeyer algo-
rithm [PAST 1973], the complexity of Algorithm 12.33 then becomes O((dQN“ + \/ETd,N) Ig d).
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Example 12.34 The ring Z,10 admits a Gaussian normal basis of type 1 and can be represented as
Z5X]/(M (X)) with M(X) = (X' —1)/(X —1). Anelement a = Z?:o a; X" is embedded in
the ring Zs[Y]/(Y1t — 1) asa = Z?:o a; Y. On input (a, 10) with

a=093X"+4733X% 4+ 164X" 4+ 887X% + 106 X° + 493X * + 348 X3 + 40X 2 + 609X + 603.

Algorithm 12.33 computes the following intermediate results at the end of the while loop:

10 1
s10 | 93Y9 +733Y8 +164Y7 4 887Y 6 4+ 106Y 5 + 493V % + 348Y3 + 40Y2 4 609Y + 603
5 1

s5 | 112Y10 444079 4 412Y8 + 752Y7 + 258Y6 +436Y° 4 756Y4 + 1007V 3 + 384Y2 4 439Y + 524
ro | 112Y10 4 440Y° 4 412Y8 + 752Y 7 + 258Y 6 + 436Y 5 + 756Y* + 1007Y 3 + 384Y 2 + 439Y + 524
so | 522Y10 1 16Y9 +492Y8 +255Y7 4+ 752Y 6 4+ 211Y5 + 325Y % 4+ 946Y3 + 189Y 2 4 984Y + 684
r1 | 112Y10 444079 + 412Y8 + 752Y7 + 258Y6 + 436Y " + 756Y 4 + 1007Y 3 + 384Y'2 + 439Y + 524
s1 | 15Y10 41739 4 743Y8 + 648Y 7 + 90Y 6 + 712Y5 + 646Y % + 996Y 3 4 87Y 2 + 349Y + 661

ro | 759Y 10 4 7599 4 759Y8 4+ 759Y 7 + 759Y 6 4+ 7595 4 759Y 4 4 759Y3 4 759Y 2 + 759Y + 602
so | 15Y10 4 173Y9 + 743Y8 4 648Y7 + 90Y' 6 + 712V + 646Y* + 996Y3 + 87Y 2 4 349Y + 661

Note that the element r returned by the algorithm needs to be reduced modulo M, which finally
gives Ng_ /g, (a) = 867 (mod 2'°).

12.8.5.b Norm computation Il

Satoh, Skjernaa, and Taguchi [SASKT 2003] also proposed a fast norm computation algorithm
based on an analytic method. First assume that a is close to unity, i.e., v,(a —1) > 1/(p— 1), then

Ng, /0, (a) = exp (TrQq/Qp (log(a))) , (12.21)

since X is continuous and both series converge. Combining the algorithms described in Sec-
tions 12.8.2, 12.8.3 and 12.8.4, we conclude that if a is close to unity then Ng_ /g, (a) (mod p™)
can be computed in O(v/N T n1w) bit-operations and O(dN ) space.

Algorithm 12.35 computes the norm of an element in 1 + 2¥Z,, with ¢ = 2¢, assuming that
exp(4) and Trq, /g, (X*) fori = 0,...,d — 1 are precomputed.

Algorithm 12.35 Norm Il

INPUT: An element a € 1 + 2"Z4 with v > 2 and a precision N.
OUTPUT: The norm Ny, /g, (@) mod 2.

1. s+« L\/N/QJ
2. 2z (azs - 1) mod 2N+

3. w <« (log(1+ z)) mod 2V**

4, w— (275w) mod 2V
5. u«— (27" Trq, /g, (w)) mod 2V~

6. return (exp(4)“) mod 2V

Example 12.36 Let Zos be represented as Zo[X]/ (M (X)) with M (X) = X84+ X*+ X34+ X2 +1
and let a = 572X7 + 108X % + 660X ° + 556 X* + 456 X3 + 748 X2 + 36X + 569. For N = 10,
Algorithm 12.35 computes the following values: s = 1,

2 =936X" + 568X° + 760X° + 1880X* 4 1840X° + 1176 X2 + 1656X + 1408,
w = 1864X" + 248 X5 4 1880X° 4+ 728 X* + 1648 X3 + 1304 X2 + 24X + 1632,
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u = 163, exp(4) = 333 and finally Ng, /g, (a) = 725 (mod 2'?).

Now consider the more general situation where a € Zg is not close to unity. Let w(p1(a)) € Zq
denote the Teichmiiller lift of p; (@), i.e., the unique (¢ — 1)-th root of unity, which reduces to p; (a).
Consider the equality

Na, /e, (@) = Ng, /g, (w(p1(a))) No, /g, (@(p1(a)) " a),

then vy, (w(p1(a))~*a — 1) > 1. Furthermore, note that Ng,_ /g, (w(p1(a))) is equal to the Teich-
miiller lift of Ng_/r (p1(a)). For p > 3, (12.21) holds since

vp(w(pl(a))_la — 1) >1>1/(p—1).

For p = 2 we need an extra trick: simply square w(p1 (a))fla modulo 2+, compute the norm
of the square using Algorithm 12.35 modulo 2+ and take the square root of the norm, which is
determined modulo 2V. This shows that Ng, /0, (a) mod p™ for any a € Z, can be computed in
O(\/NTd,N+\/N) bit-operations and O(dN) space.

12.8.5.c Norm computation Il

In an e-mail to the NMBRTHRY list [HAR 2002b], Harley suggested an asymptotically fast norm
computation algorithm based on a formula from number theory that expresses the norm as a re-
sultant. The resultant itself can be computed using an adaptation of Moenck’s fast extended gcd
algorithm [MOE 1973].

Let Zq ~ Zy[X]/(M(X)) with M € Z,[X] a monic irreducible polynomial of degree n. Let
6 € Zq be aroot of M, then M splits completely over Z, as

d—1

M(X) =[] (x - £9).

i=0
For a = Z?:_()l a; X" € Z,, define the polynomial A(X) = Zf;ol a; X" € Z,[X]. By definition of
the norm and the resultant we have

d—1 d—1
Ng,/a,(@) = [ ='(a) = [T A(Z'(6)) = Res(M(X), A(X)).
=0 =0

The resultant Res (M (X), A(X)) can be computed in softly linear time using a variant of Moenck’s
fast extended ged algorithm [MOE 1973]. The result is an algorithm to compute Ng_/q, (a) mod
p" in time O((dN)"1gd).

Example 12.37 Let Zys be represented as Zo[X]/(M (X)) with M (X) = X8+ X4+ X34+ X2 +1
and let a = 572X 7 4 108X ° + 660X° + 556 X* + 456 X3 + 748X 2 + 36X + 569. Computing
the resultant of M (X) and A(X) as an integer gives

Res(M(X), A(X)) = 110891016699366462823125 = 725 (mod 2'°),

which gives the same result as in Example 12.36. Of course, in practice we never compute the
resultant as an integer, but always reduce modulo 21°.
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Elliptic curves constitute one of the main topics of this book. They have been proposed for appli-
cations in cryptography due to their fast group law and because so far no subexponential attack on
their discrete logarithm problem (cf. Section 1.5) is known. We deal with security issues in later
chapters and concentrate on the group arithmetic here. In an actual implementation this needs to be
built on an efficient implementation of finite field arithmetic (cf. Chapter 11).

In the sequel we first review the background on elliptic curves to the extent needed here. For a
more general presentation of elliptic curves, see Chapter 4. Then we address the question of efficient
implementation in large odd and in even characteristics. We refer mainly to [HAME™ 2003] for
these sections.

Note that there are several softwares packages or libraries able to work on elliptic curves, for
example PARI/GP [PARI] and aRcs [APECS]. The former is a linkable library that also comes with
an interactive shell, whereas the latter is a Maple package. Both come with full sources. The
computer algebra systems Magma [MAGMA] and SIMATH [SIMATH] can deal with elliptic curves,
too.

Elliptic curves have received a lot of attention throughout the past almost 20 years and many
papers report experiments and timings for various field sizes and coordinates. We do not want
to repeat the results but refer to [AVA 2004a, COMIT 1998] and Section 14.7 for odd charac-
teristic and [HALO™ 2000, LODA 1998, LODA 19gg] for even characteristic. Another excellent
and comprehensive reference comparing point multiplication costs and implementation results is
[HAME™ 2003, Tables 3.12, 3.13 and 3.14 and Chap. 5].

267
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13.1 Summary of background on elliptic curves

13.1.1 First properties and group law
We start with a practical definition of the concept of an elliptic curve.

Definition 13.1 An elliptic curve E over a field K denoted by F/K is given by the Weierstrafs
equation

E:y? + azy + asy = 2° + asz® + asx + ag (13.1)
where the coefficients a1, as, as, a4, as € K are such that for each point (1, y1) with coordinates

in K satisfying (13.1), the partial derivatives 2y; + a;z1 + a3 and 32? + 2a271 + a4 — a1y1 do not
vanish simultaneously.

The last condition says that an elliptic curve is nonsingular or smooth. A point on a curve is called
singular if both partial derivatives vanish (cf. the Jacobi criterion 4.94). For shorter reference we
group the coefficients in (13.1) to the equation

E:y?> 4+ h(x)y = f(z), h(z),f(r)c K[z], deg(h)<1,deg(f) =3 with f monic.
The smoothness condition can also be expressed more intrinsically. Indeed, let

by = CL% + 4as, by = aras + 2ay,
bg = a% + 4ag, bg = a%aﬁ — ajasay + 4asag + agag — ai.
In odd characteristic, the transformation y — y — (a1 + as)/2 leads to an isomorphic curve given
by
bo by be
2 3 2
_ b2 Pa U6 13.2
y =4+t oot (13.2)

The cubic polynomial above has only simple roots over the algebraic closure K if and only if its
discriminant is nonzero. The equation of the discriminant is therefore useful to determine if (13.2)
is an elliptic curve or not. In addition, it is relevant for characteristic 2 fields as well.

Definition 13.2 Let E be a curve defined over K by (13.1) and let bo, by, bg and bg as above. The
discriminant of the curve F denoted by A satisfies

A = —b3bg — 8b3 — 2702 + babyb.

The curve F is nonsingular, and thus is an elliptic curve, if and only if A is nonzero. In this case,
we introduce the j-invariant of E, that is j(E) = (b3 — 24b4)3/A.

Example 13.3 In [F,, with p = 2003, an elliptic curve is given by
Ey :y? 4 22y 4 8y = 2° + 522 + 11362 + 531. (13.3)

Indeed, we have by = 24, by = 285, bg = 185, A = 1707 # 0 and j = 171.
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We now show how to turn the set of points of E into a group with group operation denoted by .
For this we visualize it over the reals as in Figure 13.1 and assume h(z) = 0.

Figure 13.1 Group law on elliptic curve y? = f(z) over R.

PoQ

. |
),

(21

—(P® Q)

To add two points P = (x1,y1) and @ = (x2,y2) in general position one draws a line connecting
them. There is a third point of intersection. Mirroring this point at the z-axis gives the sum P & Q.
The same construction can be applied to double a point where the connecting line is replaced by the
tangent at P.

Furthermore, we need to define the sum of two points with the same x-coordinate since for them
the group operation cannot be performed as stated. As y? = f(z) there are at most 2 such points
(z1,y1) and (21, —y1). Furthermore, we have to find the neutral element of the group.

The way out is to include a further point P, called the point at infinity. It can be visualized as
lying far out on the y-axis such that any line z = ¢, for some constant ¢, parallel to the y-axis passes
through it. This point is the neutral element of the group. Hence, the line connecting (x1,y;) and
(z1,—y1) passes through P,,. As it serves as the neutral element, the inflection process leaves it
unchanged such that (z1,y1) ® (21, —y1) = Peo, i.€., (21, —y1) = —P.

This explanation might sound a little like hand-waving and only applicable to R. We now derive
the addition formulas for an arbitrary field K, which hold universally. For a proof we refer to
Chapter 4.

Take P # Q with 21 # x5 as above and let us compute the coordinates of R = P®Q = (3, y3).
The intersecting line has slope

N = Y1 — Y2
T — T2

and passes through P. Its equation is thus given by

T1Y2 — T2Y1
1 — X2

y=Ar +
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We denote the constant term by p and remark 1 = y; — Ax1. The intersection points with the curve
are obtained by equating the line and E

Az + ) + (a1 + az) Az + p) = 2° + apa? + ayx + ag.
This leads to the equation r(z) = 0 where
r(x) = 23 4 (a2 — A2 — a1 N2 + (ag — 2\ — az\ — ayp)x + ag — p* — asp.
We already know two roots of (), namely the x-coordinates of the other two points. Since
r(@) = (@ - 21)(x — 2)(@ - a3)

one has A2 + a1\ — as = z1 + T2 + 3. As 1, z2 are defined over K so is x5 and §3 = Ax3 + L
The inflection at the x-axis has to be translated to the condition that the second point has the same
x-coordinate and also satisfies the curve equation. We observe that if P = (21, y;) is on the curve
then so is (x1, —y1 — a1x1 — ag), which corresponds to — P since the point at infinity is the neutral
element for this law. Accordingly, we find y3 = —Ax3 — p — a3 — as.

Doubling P = (x1,y1) works just the same with the slope obtained by implicit derivating. Thus
we have P @ @ = (x3,y3) and

-P = (xh_yl —air —Clg),
PaQ = (M4+aA—ay—z — 22, \x1 — 23) — y1 — a123 — a3), where
Ny P+ +0Q,
\ X1 — T2

Sx% + 2a0x1 + a4 — a1
2y1 +a1w1 + a3

ifP=0Q.

It is immediate from the pictorial description that this law is commutative, has the point at infinity as
neutral element, and that the inverse of (x1, y1) is given by (21, —y1 —a121 — as3). The associativity
can be shown to hold by simply applying the group law and comparing elements. We leave the
lengthy computation to the reader. Note that Chapter 4 gives extensive background showing in an
abstract way the group of points on E to form a group. For a more geometrical proof, relying on
Bezout’s theorem, see e.g., [CAS 1991].

Example 13.4 One can easily check that the points P; = (1118,269) and Q1 = (892, 529) lie on
the curve E /IF,, as defined by (13.3). Then

—P, = (1118,1493),
PL®Q: = (1681,1706),
[2]P, = (1465,677)

are also on Ej.

The point at infinity can be motivated by giving an alternative description of elliptic curves. Equa-
tion (13.1) expresses the curve in affine coordinates. The same elliptic curve E in projective coor-
dinates is then given by the equation

E:Y2Z+a . XYZ+a3YZ%=X34a,X%Z + ay X Z? + agZ°.

E&% us denote by (X7 : Y7 : Z;) an element of the projective 2-space P?/K, i.e., a class of
K"~ {(0,0,0)} modulo the relation

(Xl 1Y Zl) ~ (X2 ) O ZQ) <= thereis A GF* | Xy = )\Xl, Yo = AY7 and Z5 = \Z;.
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By abuse of notation, we identify a class with any of its representatives and call (X; : Y : Zp)
a projective point. We remark that only a single point of E satisfies Z; = 0, namely the point at
infinity, which is in this case P», = (0 : 1 : 0). When Z; # 0, there is a simple correspondence
between the projective point (X7 : Y7 : Z1) and the affine point (x4, y1) using the formula

(x1,91) = (X1/Z1,Y1/Z1) (13.4)

As the representation (X7 : Y7 : Z7) is not normalized, one can perform arithmetic in projec-
tive coordinates without any inversion. Note also that generalized projective coordinates involving
suitable powers of Z in (13.4) are commonly used, cf. Sections 13.2.1 and 13.3.1.

Example 13.5 The point P; = (917 : 527 : 687) lies on the curve E; of equation (13.3) expressed
in projective coordinates, i.e.,

Ey:Y?2Z4+2XYZ4+8YZ?=X3+4+5X%74+1136X 2%+ 53125.

In fact, Pj is in the same class as (1118 : 269 : 1) and thus corresponds to the affine point P; =
(1118,269).

13.1.2 Scalar multiplication

Take n € N\ {0} and let us denote the scalar multiplication by n on E by [n], or [n]g to avoid
confusion. Namely,

[n]: E—FE
P—nP=P&P&---@P.
—_—
n times
This definition extends trivially to all n € Z, setting [0]P = Px, and [n]P = [—n|(—P) forn < 0.

Chapter 9 deals with exponentiation, i.e., the computation of = to some power n. In the context of
elliptic curves, this corresponds to [n] P. Thus multiplications, squarings, and divisions are replaced
by additions, doublings, and subtractions on F.

As an example, we give the analogue of Algorithm 9.10 with additive notation.

Algorithm 13.6 Sliding window scalar multiplication on elliptic curves

INPUT: A point P on an elliptic curve E, a nonnegative integer n = (n;—1 ...no)2, a parameter
k > 1 and the precomputed points [3] P, [5] P, ..., [(2* — 1)]P.
OUTPUT: The point [n]P.

1. Q«— Pxandi—1—1
while ¢ > 0 do
if n;, =0 then Q «— [2]Qandi —i—1

else

2

3

4

5. s «— max(i —k+1,0)
6 while n; =0 do s «—s+1

7 for h=1 to i—s+1do Q « [2]Q

8 w— (ni...ng)2 [ni=ns=1andi—s+ 1< k]
9

Q—Qd[ulP [u is odd so that [u] P is precomputed]
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10. 1—s—1

11.  return Q

Remark 13.7 Since subtractions can be obtained in a straightforward way, signed-digit representa-
tions of n are well suited to compute [n] P, cf. Section 9.1.4.

Example 13.8 With the settings of Example 13.4, let us compute [763] P; with Algorithm 13.6 and

a window of size 3. We precompute [3]P; = (1081,1674), [5]P, = (851,77), [7]P1 = (663,1787)
and since 763 = (101 111 101 1), the intermediate values of () are
5 7 5 1

[5]P = (851,77), [10] P, = (4,640), [20] P, = (836,807),
[40]P, = (1378,1696), [47)P = (1534, 747), [94) P, = (1998,1094),
[188] P, = (1602,1812),  [376]P) = (478,1356), [381] P, = (1454, 981),
[762] P, = (1970,823), [763]Py = (1453,1428).
IOT) instead, one obtains

Using the NAF expansion of 763 = (10100000
3

3]P, = (1081, 1674), [6]P, = (255, 1499), [12]P; = (459, 1270),
[24]P = (41,1867), [48] P, = (1461, 904), [96] P, = (1966, 1808),
[192] Py = (892, 529), [384] Py = (1928,1803), [768] Py = (799, 1182),
]

[763] P, = (1453,1428).

The last step, namely [763] P, = [768] Py & [—5] Py, needs [—5]P; = (851, 216) which is obtained
directly from [5]P;.

13.1.3 Rational points

When we consider a point P on an elliptic curve E/K, it is implicit that P has its coordinates in
K. To stress that P has its coordinates in /, we introduce a new concept.

Definition 13.9 Let F be an elliptic curve defined over K. The points lying on F with coordinates
in K form the set of K -rational points of E denoted by F(K). We have

E(K) ={(z1,51) € K* |y + a1z1y1 + asyr = 27 + a2z} + aszy + ag} U {Pw}.

The structure of the group of IF,-rational points is easy to describe. Indeed, by Corollary 5.77, E(FF,)
is either cyclic or isomorphic to a product of two cyclic groups, namely E(F,) ~ Z/d1Z x Z/d>Z
where d; | dy and d; | g — 1.

For cryptographic applications one usually works in a subgroup of prime order ¢. Hence, one
is interested in curves and finite fields such that |E(FF,)| = ¢/ for some small cofactor c. See
[GAMC 2000] for conjectural probabilities that the number of points is a prime or has a small
cofactor.

Finding a random F,-rational point P on an elliptic curve E/FF is quite easy. See Sections 13.2
and 13.3 for examples. If the curve has a cofactor ¢ > 1 then this random point needs not lie inside
the group of order £. However, the point @ = [¢| P either equals P, in which case one has to try
with a different random point P, or is a point in the prime order subgroup.

Example 13.10 Let us consider the curve E; as defined by (13.3). One can check that |E4 (F,)| =
1956 = 12 x 163. So, there are 1955 affine points with coordinates in F;, and the point at infinity
P, lying on E;. The point P; = (1118, 269) is of order 1956 which implies that the group E (IF,)
is cyclic generated by P;. The point Q)1 = (892, 529) is of prime order 163.
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13.1.4 Torsion points

Definition 13.11 Let E/K be an elliptic curve and n € Z. The kernel of [n], denoted by E[n],
satisfies

Eln) = {P € B(R) | )P = P},
Anelement P € E[n] is called a n-forsion point.

Example 13.12 As E; (F,) is cyclic of order 1956 = 22 x 3 x 163, there are n-torsion points in
E, (F)) for every n dividing 1956. For instance, Ry = (1700, 299) on E; satisfies Ry = —R;. Thus
R; is a 2-torsion rational point. If n is not a divisor of 1956, the corresponding n-torsion points
have coordinates in some extension of [F,,. For example, there is a 9-torsion point with coordinates
in the field F,s ~ [F,,[#] with 6 such that 63 4+ #% + 2 = 0. Indeed, we can check that

S1 = (123967 + 18720 + 112,12630* + 3346 + 1752) € E1(F,q),
[3]S1 = (520,1568) € Ey(F,),
[8]S1 = (12396 4 18720 + 112,2650% + 19310 + 19) = -5,

so that .Sy is a 9-torsion point.
See also the related notion of division polynomial in Section 4.4.2.a.

Theorem 13.13 Let E be an elliptic curve defined over K. If the characteristic of K is either zero
or prime to n then
E[n] ~ Z/nZ x Z/nZ.

Otherwise, when char(K) = p and n = p", then either
Elp")| ={Px}, forallr >1 or E[p"|~Z/p"Z, forallr > 1.

Definition 13.14 Let char(K) = p and let E be defined over K. If E[p"] = { P} for one and in
fact for all positive integers r, then the curve is called supersingular. Otherwise the curve is called
ordinary.

A curve defined over a prime field F,,,p > 3 is supersingular if and only if |E(F,)| = p + 1,
cf. Proposition 13.31. Note also that if char(F,) = 2 or 3, E is supersingular if and only if its
j-invariant is zero.

Example 13.15 The curve E; /F,, is ordinary. This implies that F [p] is a subgroup of (E1(F),), ®)
isomorphic to (F,, +).

13.1.5 Isomorphisms

Some changes of variables do not fundamentally alter an elliptic curve. Let us first describe the
transformations that keep the curve in Weierstraf3 form.

13.1.5.a Admissible change of variables and twists
Let E/K be an elliptic curve
E: y2 +aizy + azy = 3 4+ agx? + asx + ae.

The maps
z— v’ +r and ye— Py +ulsa’ +t
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with (u,7,s,t) € K* x K? are invertible and transform the curve E into
E':y? + a2y +ahy = 2 4 dha’? + ajx’ + ay,

where the a’s belong to K and can be expressed in terms of the a;’s and u, r, s, t. Via the inverse
map, we associate to each point of £ a point of E’ showing that both curves are isomorphic over
K. These changes of variables are the only ones leaving invariant the shape of the defining equation
and, hence, they are the only admissible change of variables.

In case (u,r, s, t) belongs to K" x K~ whereas the curves E and E’, as above, are still defined
over K, then E and E’ are isomorphic over K or twists of each other.

Corollary 13.16 Assume that the characteristic of K is prime to 6 and let E be given by a short
Weierstrall equation
E:y2:x3+a4x+a6.

« If aq = 0 then for every aj; € K* the curve F is isomorphic to E’ : y?> = 23 + af over
K ((ag/ag)"/®).

« If ag = 0 then for every @), € K* the curve E is isomorphic to £’ : y* = 2® + a)yx over
K ((aa/a})'/*).

o If aqas # O then for every v € K* the curve E is isomorphic to E,: y? = ¥ +ajr+ag
with @, = v%a4 and ajy = v3ag over the field K (\/v).

The curves E,, are called quadratic twists of E. Note that F is isomorphic to E, over K if and only
if v is a square in K*. Therefore up to isomorphisms there is only one quadratic twist of a curve
with a4ag 7é 0.

Remark 13.17 Likewise one can define the quadratic twist of E' by a quadratic nonresidue v as
FE, : va = 2% 4+ a4z + ag, which is isomorphic to the above definition, as can be seen by dividing
by v* and transforming y — y /v, z — z/v.

From this form one sees that E and E,, together contain exactly two points (z, y;) for each field
element z € .

Proposition 13.18 Let £/ K and E’/ K be two elliptic curves. If F and E’ are isomorphic over K
then they have the same j-invariant. Conversely, if j(E) = j(E') then E and E’ are isomorphic
over K.

Using an adequate isomorphism over K, it is always possible to find a short Weierstraf3 equation
that actually depends on the characteristic of the field and on the value of the j-invariant. All the
cases and equations are summarized in Table 13.2.

Table 13.2 Short Weierstral3 equations.

‘ char K ‘

A

Equation J
#2,3 y? =23 + asw + ag —16(4aj + 27a2) 1728a3/4A
3 y2 = 2% 4+ a4z + ag —ai 0
3 y? =23 + agx® + ag —adag —a3/ag
2 Y2 + asy = 2% + asx + ag a% 0
2 Y2+ ry = 23 + a92? + ag ag 1/ag
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Example 13.19 The change of variables (xz,y) — (x — 2,y — x — 2) transforms the curve E; given
by (13.3) into
By y? = 2% + 11322 + 278.

The point P; = (1118, 269) is mapped to P, = (1120, 1391) € Es(F,).
Let v be a quadratic nonresidue modulo p = 2003 and let u € 2 be a square root of v. Then
the change of variables (z,y) — (z/u?,y/u?) is an F2-isomorphism between

By :y? = 23 + 11322 4 278.
and its quadratic twist by v, namely
EQ,?) : y2 = 2% 4+ 11320%x + 2780,

We have A(E, ) = vA(Ey) and j(Es,,) = j(E,) = 171.
The curves E3 and Es , are defined over [F, whereas the isomorphism has coefficients in [F 2.

Remark 13.20 There are many other ways to represent an elliptic curve. For instance, we can cite
the Legendre form
Y’ = (e — )@ -\

or the Jacobi model
y? =2t + az? +b.

Over a field of characteristic greater than 3, it is also possible to represent an elliptic curve as the
intersection of two quadrics with a rational point [CAS 1991]. The resulting Jacobi form is used in
[L1SM 2001] to prevent SPA/DPA attacks, cf. Section 29.1.2.c. Quite recently, some attention has
been given to another representation, namely the Hessian form, which presents some advantages
from an algorithmic and cryptographic point of view [SMA 2001, FRI 2001, JOQU 2001].

13.1.5.b Hessian form

Let IF,; be a finite field where ¢ is a prime power such that ¢ = 2 (mod 3) and consider an elliptic
curve E over F, with a [F -rational point of order 3. These assumptions are not fundamentally
necessary but they make the construction of the Hessian form easier and let the equation be defined
over IF;. In particular, one can assume that F is given by the equation

E:y® +aiwy + azy = 2°,

moving a point of order 3 to the origin, if necessary.

Let § = (a? — 27a3) so that A = a34. Now if ¢ = 2 (mod 3) every element « € F, is a cube.
Thus every « has a unique cube root, denoted by '/, which is equal to plus or minus the square
root of a(?+1)/3_ This implies that

nw= %((—27(1352 — 0B 4 ) € Fy.

With these settings, to every point (x1,y1) on F corresponds (X : Y7 : Z;) with

a1(2u —9)
X, = \er=9)
! 3u—20

—a
1 + Y1 + as, Y, = LA 1 — Y1, Zy =
3u—246

—ay L

3u—246

Tl —as

on the cubic 5
H:X34+Y34+ 23 =¢XYZ where c¢=32"C.
1
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Definition 13.21 The equation H is called the Hessian form of E.

One of the main features of elliptic curves expressed in Hessian form is the simplicity of the group
law, which is independent of the parameter c.

Namely, take P = (X7 : Y7 : Z1) and Q = (X3 : Y3 : Z3) on H such that P # @, then the point
with coordinates (X3 : Y5 : Z3) such that

X3 = Y2 XoZy — YEX1Z1, Ys=XolZy— XIViZ1, Z3=ZiXoYs— Z3X 1Y)

is on H and correspondsto P & Q.

One can check that the neutral element for that law is (1 : —1 : 0) and that the opposite of P; is
—P1 = (Y1 : X1 : Zl)

The coordinates of [2] P are

X3 = Yi(Z} - X3), Ys = Xi(Yf - Z}), Zs = Zy(X} - YP).

An addition requires 12 field multiplication and 6 squarings, whereas a doubling needs 6 multiplica-
tions and 3 squarings and both operations can be implemented in a highly parallel way [SMA 2001].
It is also interesting to note that [2] P is equal to (Z7 : X7 : Y1) @ (Y7 : Z1 : X1). As a consequence
the same formulas can be used to double, add, and subtract points, which makes Hessian curves
interesting against side-channel attacks [JOQU 2001] (cf. Section 29.1.2.b).

To find the Hessian form of an elliptic curve E/F, in the general case [FRI 2001], we remark
that the j-invariant of H is equal to

A(c + 216)°
c® — 81c8 + 2187¢3 — 19683

j=

So the Hessian form of E'is defined over IF, if and only if there exists ¢ € I, such that
A +216)% — j(c” — 81c° 4 2187¢* — 19683) = 0

where j is the j-invariant of E.

Example 13.22 Take
Fy i y? = 2% + 11322 + 278

defined over F,, with p = 2003. Moving the point (522, 1914) € E5(IF,) of order 3 to the origin by
the transformation
(z,y) — (x + 522,y + 555z + 1914)

gives the curve
Fs:y? 4+ 11102y + 1825y = 3.

So, from above, § = 1427 and i = 1322 so that F5, consequently E» and F1, are all isomorphic to
H:X34+Y3+273=214XYZ.

The point (1118,269) on Ej is sent to (1120,1391) on Es, from where it is in turn mapped to
(598, 85) on E3, which is finally sent to (1451 : 672 : 935) on H.

Note that all these transformations respect the group laws of the different curves. Indeed, a K-
isomorphism between the curves F and E’ always gives rise to a group homorphism between F(K)
and E'(K). However, these notions are different. That is why we introduce a new concept in the
following.
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13.1.6 Isogenies

Definition 13.23 Two curves E/K and E’'/K are isogenous over K if there exists a morphism
¥ : E — E' with coefficients in i mapping the neutral element of E to the neutral element of E’.
From this simple property, it is possible to show that ¢ is a group homomorphism from FE(K) to
E'(K).

One important property is that for every isogeny v, there exists a unique isogeny 1[) : B/ — F called
the dual isogeny such that

boy=[mlp and o= [m|e.

The degree of the isogeny 1 is equal to this m. For more background on isogenies, we refer to
Section 4.3.4
Proposition 13.24 Two elliptic curves £ and E’ defined over I, are isogenous over I, if and only
|E(Fy)| = [E'(Fg)l.
Example 13.25 Take

FEy:y? =23 + 11322 + 278
and

Ey :y? = 23 + 500z + 1005.
These two curves have the same cardinality, |E2(Fp)| = |E4(F,)| = 1956. Then E3 and E4 must
be isogenous over Fog3. The isogeny of degree 2 is given by the formula [LER 1997]

22 + 301z + 527 ya® + 602yz + 1942y

z + 301 22 4+ 602z 4 466

For instance, the points, P, = (1120,1391) and Q2 = (894, 1425) in E»(F,) are respectively
mapped by 1) on P, = (565, 302) and Q4 = (1818, 1002) which lie on E4. Now

w:(x,y)H<

P,®Q; = (1683,1388),
P,®Qs = (1339,821),
V(PR ®Q2) = (1339,821),
= P(P2) ©Y(Q2).

Note that E5 and E, are isogenous but not isomorphic since j(FE3) = 171 whereas j(E,) = 515.
Furthermore, the group structure is different as F(IF,,) is cyclic while E4(FF}) is the direct product
of a group of order 2 generated by (1829, 0) and a group of order 978 generated by (915, 1071).

13.1.7 Endomorphisms

The multiplication by n is an endomorphism of the curve E for every n € Z. The set of all
endomorphisms of F defined over K will be denoted by Endk (F) or more simply by End(FE),
and thus contains at least Z.

Definition 13.26 If End(F) is strictly bigger than Z we say that E has complex multiplication.

Let E be a nonsupersingular elliptic curve over F,. Such an E always has complex multiplication.
Indeed, the Frobenius automorphism of IF, extends to the points of the curve by sending P, to itself
and P = (z1,y1) to ¢q(P) = (z{,y}). One can easily check that the point ¢, (P) is again a point
on the curve irrespective of the field of definition of P. Hence, ¢, is an endomorphism of E, called
the Frobenius endomorphism of E/F,. 1t is different from [n] for all n € Z.



278 Ch. 13 Arithmetic of Elliptic Curves

Example 13.27 Take P, = (1120,391) on E;/F,. Since P; has coordinates in F,, ¢,(P;) is
simply equal to P;. At present, let us consider a point on E; with coordinates in an extension of IF,,.
For instance, in Example 13.10, we give the point S; of order 9 in £y (I3 ). We have

S = (12390% + 187260 + 112,12636% + 3346 + 1752),
bp(S1) (21767 + 3990 + 1297, 6816% + 8110 + 102),
2(S1) = (54767 + 17356 + 297,596 + 8586 + 325),
2(S1) = (12396% + 18726 + 112,12630° + 3346 + 1752) = 5.

All of them are also 9-torsion points.

13.1.8 Cardinality

The cardinality of an elliptic curve E over F, i.e., the number of FF,-rational points, is an important
aspect for the security of cryptosystems built on E(F,), cf. Section 19.3.
The theorem of Hasse—Weil relates the number of points to the field size.

Theorem 13.28 (Hasse—-Weil) Let E be an elliptic curve defined over IF,. Then
|E(F,)| =g+ 1—tand || < 24/g.
Remarks 13.29

(i) The integer t is called the trace of the Frobenius endomorphism.

(ii) For any integer ¢ € [—2,/p,2,/p| there is at least one elliptic curve E defined over I,
whose cardinality is p + 1 — .

Concerning admissible cardinalities, the more general result is proved in [WAT 1969].

Theorem 13.30 Let ¢ = p?. There exists an elliptic curve E defined over F, with |E(F,)| =
q + 1 — t if and only if one of the following conditions holds:

1. t #0 (mod p) and t? < 4q.

2. dis odd and either (i)t = O or (ii) p = 2 and t> = 2q or (iii) p = 3 and t*> = 3q.

3. d is even and either (i) t> = 4q or (i) p Z 1 (mod 3) and t> = g or (iii) p #Z 1
(mod 4) and ¢ = 0.

One associates to ¢, the polynomial
xe(T)=T*—1tT +q.
It is called the characteristic polynomial of the Frobenius endomorphism, since
X5(9q) = &7 — [tlég + [a] = [0].
So, for each P € E(F,), we have
64(P) & [~t]¢g(P) & [q] P = Po.

As points in E(F,) are fixed under ¢, they form the kernel of (Id —¢,) and |E(F,)| = xg(1).
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From the complex roots 7 and 7 of x (¢,) one can compute the group order of E(F ), that is
|E(Fp)| =q¢" +1—7F -7 forallk > 1. (13.5)

More explicitly, one has
|E(Fp)| =¢" +1 -1t

where the sequence (tx)xen satisfies to = 2, t; = t and tg4q1 = tty, — qtg—1, fork > 1.
We also have the following properties.

Proposition 13.31 Let £ be a curve defined over a field IF, of characteristic p. The curve E is
supersingular if and only if the trace ¢ of the Frobenius satisfies

t=0 (mod p).

Proposition 13.32 Let I be a curve defined over I, and let E be the quadratic twist of E. Then

|E(Fq)| + [E(Fq)| = 29 + 2.
This can be easily seen to hold from Remark 13.17. One immediately gets x 5(7") = T? + T +q.
When one tries to find a curve with a suitable cryptographic order, that is, an order with a large prime
factor, Proposition 13.32 is especially useful since it gives two candidates for each computation, cf.
Chapter 17.
Example 13.33 The cardinality of E5(IF,) is 1956. Therefore, ¢,, satisfies

XE,(T) = T? — 48T + 2003.

Let Ry = (44362 + 17276 + 1809, 92962 + 2806 + 946). Then

¢p(R2) = (8576% + 10150 + 766, 1260* + 19020 + 419),
92 (R2) (7036% + 12646 4 1568, 94862 + 18246 4 119)

and one can check that
Q%(Rz) — [48]¢2003 (Rz) + [2003]R2 = P,..

Also, we deduce that | E(F,2 )| = 4013712 and | E>(F s )| = 8036231868.
Finally the cardinality of the curve

Ey i y® = 2® + T74x + 1867

which is the twist of E'5 by the quadratic nonresidue 78, satisfies |E2| = 2052, and the characteristic
equation of the Frobenius of F5 /IF,, is

X, (T) = T? + 48T + 2003.
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13.2 Arithmetic of elliptic curves defined over IF,,

In this section we consider curves defined over finite prime fields. As they should be used in cryp-
tographic applications, we can assume p to be large, hence, at least p > 3. We remark that all
considerations in this section hold true for an elliptic curve defined over an arbitrary finite field IF,
if char(Fy) > 3 and for supersingular curves over field of characteristic 3.

We already know that an elliptic curve E can be represented with respect to several coordinate
systems, e.g., affine or projective coordinates. In the following we deal with efficient addition and
doubling in the group of points F. To this aim we introduce five different coordinate systems in
which the speeds of addition and doubling differ. We measure the time by the number of field
operations needed to perform the respective operation.

In characteristic p > 3, one can always take for E, cf. Table 13.2, an equation of the form

E:y2zx3+a4x+a5,

where a4 and ag are in F,. The points lying on the curve can have coordinates in IF;, or in some
extension I, /F,,, for instance in an optimal extension field, cf. Section 11.3. This has two advan-
tages. First, it is straightforward to obtain the cardinality of E(F,) using (13.5) and one can use the
Frobenius ¢,, to speed up computations, cf. Section 15.1.

In the remainder of this section we deal with addition and doubling in different coordinate sys-
tems, give strategies for choosing optimal coordinates for scalar multiplication and introduce Mont-
gomery coordinates and their arithmetic. Finally, we show how to compress the representation of a
point.

An elementary multiplication in IF, (resp. a squaring and an inversion) will be abbreviated by M
(resp. S and I).

13.2.1 Choice of the coordinates

This section is based on [COMIT 19g8].
In Section 13.1.1 we explained the group law in general. Here we shall give formulas for the
coordinates of the result of the

« addition of two points P and ) € E(F,) provided P # £ @,
« doubling of P.

13.2.1.a Affine coordinates (A)
We can assume that E is given by
y2 =3 + a4 + ag.

By the arguments above, we know that the opposite of the point (x1,y1) lying on E is (1, —y1).
Also we have:

Addition
Let P = (z1,91), @ = (z2,y2) suchthat P # + @ and P ® Q = (x3, y3). In this case, addition is
given by

\ = Y1 — Y2
r1 — T2

T3 =\ — 11 — 29, Yz = M@y — x3) — Y1,
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Doubling

Let [2]P = (1‘3, yg) Then
322 +a
.2332)\2—21‘1, y3:)\($1—1‘3)—y1, )\:7123; 4'
1

For these formulas one can easily read off that an addition and a doubling require I + 2M + S and
I+ 2M + 28, respectively.

Doubling followed by an addition

Building on the ideas in [EILAT 2003], the authors of [CIJOT 2003] show how to speed up the
computation of a doubling followed by an addition using [2]P @ Q as (P @& Q) @& P. The basic idea,
i.e., omitting the computation of the intermediate values y3 and x3, saves one multiplication and the
new formulas are more efficient whenever a field inversion is more expensive than 6 multiplications.
The formulas are as follows where we assume that P % £ () and [2]P # —Q

A= (1‘2—1‘1)2, B:(yg—yl)z CZA(ZJ?l +x2)—B,
D:C(J?Q —1‘1), E:D_l, /\ZCE(yQ—yl),
Ao =2y1A(ze —21)E— A, wa= (A= A)(A+A2) + 22, ya = (z1—24)A2 — Y1,

needing I + 9M + 28S.

13.2.1.b Projective coordinates (P)
In projective coordinates, the equation of FE is
Y27 = X3+ au X 2%+ ag Z°.

The point (X7 : Y7 : Z1) on E corresponds to the affine point (X1 /71,Y1/Z1) when Z; # 0 and to
the point at infinity P, = (0 : 1 : 0) otherwise. The opposite of (X7 : Y7 : Z1)is (X7 : —=Y1 : Z3).

Addition

LetP=(X1:Y1:21),Q=(Xo:Yy: Zy)suchthat P # T Qand P® Q = (X3 : Y3 : Z3).
Then set

A=Yy, — Y17y, B=Xy7Z, — X1Zs, C = A%Z,Zy — B3 —2B?X,7Z,

so that

X3 = BC, Y3 = A(B*X,Zy — C) — B3Y, Zs, Zy = B*Z,Z,.
Doubling
Let [2]P = (X3 : Y5 : Z3) then put

A=ayZ% +3X3, B=Y17, C = X,Y,B, D = A? -8C
and

X3 = 2BD, Y3 = A(4C — D) — 8Y?B?, Zs = 8B3.

No inversion is needed, and the computation times are 12M + 2S for a general addition and TM +5S
for a doubling. If one of the input points to the addition is given by (X» : Y5 : 1), i.e., directly
transformed from affine coordinates, then the requirements for an addition decrease to 9M + 2S.
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13.2.1.c Jacobian and Chudnovsky Jacobian coordinates (7 and J°)
With Jacobian coordinates the curve E is given by
Y%= X34 asXZ* + a6 Z°.

The point (X7 : Y; : Z1) on E corresponds to the affine point (X1 /Z2,Y;/Z3) when Z; # 0 and to
the point at infinity P, = (1 : 1 : 0) otherwise. The opposite of (X7 : Y7 : Z7)is (X7 : —=Y7 : Z7).

Addition

LetP=(X1:Y1:271),Q=(Xs:Yy: Zy)suchthat P # T Qand P® Q = (X3 : Y3 : Z3).
Then set

A=X,7Z2, B=X,Z} C=Y1Z3, D=Y2Z}, E=B-A, F=D-C

and
X3 =—FE%—2AF? + F?, Y3 = —CE® + F(AE? — X3), Zs = Z1Z5E.
Doubling
Let [2]P = (X3 : Y3 : Z3). Then set
A=4X,Y?, B =3X}+asZ}
and
X3 = —2A + B2, Y3 = —8Y' + B(A — X3), Zy =2Y17,.

The complexities are 12M + 4S for an addition and 4M + 68 for a doubling. If one of the points is
given in the form (X : Y7 : 1) the costs for addition reduce to 8M + 38S.

The doubling involves one multiplication by the constant ay4. If it is small this multiplication
can be performed by some additions and hence be neglected in the operation count. Especially if
ay = —3 one can compute 7' = 3X7 — 3Z¢ = 3(X1 — Z})(X1 + Z%) leading to only 4M + 45
for a doubling. Brier and Joye [BRJO 2003] study the use of isogenies to map a given curve to an
isogenous one having this preferable parameter. Their conclusion is that for most randomly chosen
curves there exists an isogeny of small degree mapping it to a curve with a4, =